
This presentation is distributed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 United States License
For more information, see: http://creativecommons.org/licenses/
by-nc-nd/3.0/us/legalcode

* Windows, Microsoft, Windows NT, Windows 2000, Windows XP,
Windows Vista, and Windows Server are registered trademarks of

Microsoft Corporation.

Recovering Deleted Data From the
Windows* Registry

By Timothy D. Morgan

2Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Outline
◘ Registry Overview

◘ Deletion Behaviors

◘ Recovery Algorithm

◘ Experimental Results

◘ Antiforensics & Future Work

3Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Registry Overview
◘ The Windows registry is organized much like a filesystem.

● Keys are analogous to directories, values analogous to files, data
analogous to file contents

● Keys have associated ownership and permissions

● Registry "hives" are mounted under virtual paths much like
filesystems are in UNIX1

◘ Some differences include:
● Keys reference subkeys differently than values

● Values store data type information

● Records are small and are allocated differently to better work
within a compact, variable-length file

1. UNIX is a registered trademark of the Open Group.

4Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Hypothetical Hive
Logical Diagram

Root Key Key 1

Key 2

Key 3

Value 1

Value 2

Value 3

Value 4

Key 4

Key 5

Key 6

Key 7

Key 8

Value 5

Data 1

Data 5

Data 1

Data 1Data 2

Data 1Data 3

Data 1Data 4

5Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Hypothetical Hive
Data Structure Diagram

Root Key

Key 1

Key 2

Key 3

Value 1

Value 2

Value 3

Value 4

Key 4

Key 5

Key 6

Key 7

Key 8

Value 5

Data 1

Data 5

Data 1 Value
List

Value
List

Data 1Data 2

Data 1Data 3

Data 1Data 4

Subkey
List

Subkey
List

Subkey
List

6Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Data Structures
Redundant Parent Link

Parent Key

Subkey 1

Subkey 2

Subkey List

. . .

Subkey 3

7Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Record Storage: Hive Bins
◘ All physical data structures are stored in a hive inside

blocks called "hive bins" (HBINs)

◘ Each data record is stored in cells of variable length

◘ Cells are organized in HBINs using simple length-prefix
notation with a 32-bit signed length

● A negative length value indicates a cell is currently occupied

● Positive values indicate the cell is available for use

8Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

NK Record

Hypothetical Hive Bin Diagram

...

HBIN Header

-16 Value-List

-24 Subkey-List

-96

8

-32 VK Record

-16 Data

NK Record

-128

3744

9Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Summary of Record Types
◘ Keys

● “nk” signature, points to parent key & child keys/values

◘ Values

● “vk” signature, contains type and pointer to data

◘ Subkey lists

● Three types (“lf”, “lh”, and “ri”) with header and 8-byte elements which
contain a hash and a pointer

◘ Value lists

● No signature, simple list of pointers to value records

◘ Security records

● “sk” signature, contains Windows security descriptor

◘ Data

● No signature, variable length raw value data

10Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Deletion Behaviors
◘ When a cell is freed:

● Any adjacent unallocated cells are merged; or

● The cell's size is changed to a positive integer

● Cell data is generally left intact

◘ In analyzing records, we must consider a number of aspects:
● Changes to each record type when deleted

● Effect of sequential deletions on subkey/value lists

● Recursive deletion behaviors

● Modification time changes

● Platform-specific issues (i.e. Windows 2000)

11Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Deletion Behaviors: Key Records
◘ Key records are important, since they tie most of the data

structures together.

◘ The bad news:
● The pointers to the subkey list and security record are destroyed

(overwritten with 0xFFFFFFFF).

● The number of subkeys is overwritten with 0.

◘ The good news:
● The parent key and value list pointers are left intact.

● The number of values is left intact.

12Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Deletion Behaviors: Lists
◘ For subkey lists and value lists, there are two cases to

consider:
● Some or all listed elements are deleted

● The parent key is deleted

◘ When elements of a list are deleted for either list type:
● The elements are removed individually and the list is rewritten

each time. Slack space is not wiped.

● For both list types, if the final element is removed, the list is
deallocated.

◘ When a parent key is deleted:
● Subkey lists are corrupted by sequential deletions.

● Value lists are left intact.

13Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Deletion Behaviors: List Diagram
A B C D E F G

A B C D E F G

Original List:

After Deleting G:

A C D E F F G

After Deleting B:

A C D E F F G

After Deleting F:

C D E E F F G

After Deleting A:

C E E E F F G

After Deleting D:

14Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Deletion Behaviors: Value & Data
◘ For the most part, these records are untouched when

deleted.

◘ The only exception is under Windows 2000 where:
● Sometimes the first four bytes of value records are overwritten

with 0xFFFFFFFF. This corresponds to the magic
number/signature and value name length fields.

● Sometimes the first four bytes of data content is overwritten
with 0xFFFFFFFF.

◘ Since this is specific to Windows 2000 and is inconsistent, it
might just be a bug.

15Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Deletion Behaviors: MTIMEs

◘ Recall that modification times are only stored on keys.

◘ This timestamp is updated when the key is deleted and the
key has one or more subkeys.

◘ The only known exception is under Windows 2000 where
the MTIME is not updated on a key even if it has subkeys.

16Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Recovery Challenges
◘ In the best case, we have just enough information to

reconstruct data structures.

◘ Unfortunately, we're commonly faced with broken links at
multiple levels.

◘ When cells are merged, we lose track of where deleted
records begin.

◘ Validation of structures is difficult. Old data could be
confused with old records.

17Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Recovery Approach

◘ Maximize trustworthiness and volume of data recovered
by:

● Developing detailed and precise validation methods

● Making few assumptions about where deleted cells begin

● Making conservative assumptions about where cells end

◘ Be greedy. Start with:
● The most trustworthy data structures

● Data structures which have the most context

18Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Recovery Approach (cont.)
◘ A rough outline of the proposed algorithm is as follows:

Scan all unallocated cells for NK records.
For each of these NK records, follow parent
links up as far as possible, recording the
path.

For each NK record, recover as many VK and
data records as possible.

Scan remaining unallocated cells for VK records.
For each remaining VK record, recover any
associated data records

Scan remaining unallocated cells for SK records.

19Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Experimental Results
◘ The algorithm was implemented in a command line tool,

reglookup-recover, as component of RegLookup.

◘ Using this tool, tests were conducted on both production
and test environment installations to determine the:

● Efficacy of the proposed algorithm

● Amount of deleted data available to examiners

◘ Exploration of these topics was conducted on several
Windows releases, including: 2000, 2003 SE/EE, XP, and Vista

20Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Experimental Results (cont.)

◘ The amount of data recovered from registries varies widely.
● Level of fragmentation is a key factor. Allocation strategies likely

focus on minimizing this.

● Some hives change seldom, others often.

◘ From a small sampling of hives:
● Total unallocated space varies from 0% to 30%.

● Percentage of unallocated space which is recoverable has been
anywhere between 0% and 83%.

21Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Experimental Results
Vista Case Study

◘ The reglookup-recover tool performed well against the
system registry hive from a Vista test system:

● The system was minimally used, though several third-party
software packages had been installed.

● 30% of the registry was unallocated. 83% of this unallocated
space was recovered as deleted structures.

● 5669 keys were recovered, 4101 of which could be associated
with a parent key.

● 16748 values were recovered, 6470 of which could be associated
with a key.

22Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Vista Case Study (cont.)

◘ Some of the more interesting keys recovered included:
● 603 keys and values related to firewall policies

● 123 keys and values under the new Vista registry virtualization
area

● Numerous different hardware configurations, including USB
settings

● 444 keys/values related to event log configurations

● Miscellaneous LSA, group policy, and terminal services settings

23Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Antiforensics

◘ While the algorithm proposed does well in recovering
structures from typical registries, malicious registries are
another story.

◘ The lack of authoritative parent-to-child links means that
data structures may be spoofed by low-privileged users.

◘ Data may be easily hidden in the registry by simply setting
unallocated cells to an allocated state.

24Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Antiforensics (cont.)

◘ Often the best antiforensic techniques are the simplest.

◘ Numerous registry defragmentation tools exist which likely
eliminate most deleted cells.

● Plausible deniability of "performance tools"

◘ Creating a single value under every key and then deleting
them would probably overwrite most recoverable records.

● This has the benefit of changing MTIMEs as well.

25Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

Future Work
◘ Different tool behaviors

● Even regedit.exe and reg.exe differ

● Third-party tools

● Antiforensics tools

◘ Deletion statistics
● How fragmented do registries become over time?

● How long do deleted cells typically survive based on cell size?

● What is the allocation strategy and does this differ between
Windows versions?

26Copyright (C) 2008 Timothy D. Morgan. Some Rights Reserved.

References

● These presentation slides, the paper, and additional information

http://sentinelchicken.com/research/registry_recovery/

● First Looks: Basic Investigations of Windows Vista

http://www.lancemueller.com/vistaceic2007.ppt

● RegLookup

http://projects.sentinelchicken.org/reglookup/

● The Windows NT Registry File Format

http://sentinelchicken.com/research/registry_format/

