
The Windows NT∗Registry File Format
Version 0.4

Timothy D. Morgan
tim-registry(α)sentinelchicken.org

June 9, 2009

Abstract

The Windows registry serves as a primary storage lo-
cation for system configurations and other information.
Numerous third-party commercial and open source tools
have been released to interpret and manipulate registry
hives, but a comprehensive description of the registry’s
data structures seems to be missing from the public do-
main. This document attempts to shed light on the details
of the registry format and will be updated as more infor-
mation is made available.

1 Introduction

The Windows registry stores a wide variety of informa-
tion, including core system configurations, user-specific
configuration, information on installed applications, and
user credentials. Little information has been published
by Microsoft related to the specifics of how registry in-
formation is organized into data structures on disk. For-
tunately, various open source developers have worked to
understand and publish these technical details in order to
write software compatible with Microsoft’s registry for-
mat. However, these sources are by and large incomplete
and fragmented, making tool implementation difficult and
tedious at best. Here we attempt to combine the avail-
able public information, along with additional knowledge
gleaned from testing, to provide a comprehensive refer-
ence on Windows NT-based registry data structures.This
should be considered a living document and will be up-
dated as new information becomes available. Please con-
tact the author with any errata or new information per-
taining to data structure specifics.

∗Throughout this paper, note that Windows, Microsoft, Windows 95,
Windows 98, Windows ME, Windows NT, Windows 2000, Windows
XP, Windows Vista, and Windows Server are registered trademarks of
Microsoft Corporation.

2 Previous Work

Registry internal structures have been outlined by Mark
Russinovich [15] and David Probert [14], which provide
a good overview of how Windows interacts with registry
components. Further detailed work has been published by
unknown authors in [3] and [2], which lays the ground-
work for a detailed understanding of registry data struc-
tures. Numerous open source tools provide access to NT
registry internals [12, 16, 18, 20] and have expanded on
the public’s knowledge of technical specifics.

3 Registry Structure Overview

Here, we briefly provide an overview of the internal data
structures of the registry. Later sections provided addi-
tional details about specific groups of data structures. Fi-
nally, a reference on the specific layout of each structure
may be found in Appendix A.

The Windows registry is organized in a tree structure and
is analogous to a filesystem. For instance, registry values
are similar to files in a filesystem as they store name and
type information for discrete portions of raw data. Reg-
istry keys are closely analogous to filesystem directories,
acting as parent nodes for both subkeys and values. Fi-
nally, individual registry files (or “hives”) are presentedto
users in Windows under a set of virtual top-level keys in
much the same way that multiple filesystems in UNIX1

are mounted under the same root directory.

The internal structure of Windows registry hives does,
however, differ a great deal from typical filesystems. One
major difference is that keys reference values differently
than subkeys, whereas most filesystems reference both us-
ing the same structures. Additionally, due to the type of
storage (a binary file), the allocation storage for data struc-
tures is done in a way as to minimize fragmentation and
linear space utilization.

1UNIX is a registered trademark of the Open Group.

1



6 SUBKEY AND VALUE LISTS

Registry Header

Hive Bin 1

Hive Bin 2

Hive Bin 3

Hive Bin 4

...

Figure 1: Top-level Registry Structure

Hive Bin Header

Cell 1 Length

Cell 1 Data

Cell 2 Length

Cell 2 Data

Cell 3 Length

Cell 3 Data

...

Figure 2: Hive Bin Structure

4 Hive Bins

Registry hive files are allocated in 4096-byte blocks start-
ing with a header, or base block, and continuing with a
series of hive bin blocks. Each hive bin (HBIN) is typi-
cally 4096 bytes, but may be any larger multiple of that
size. HBINs are linked together through length and offset
parameters as shown in Figure 1. Each HBIN references
the beginning of the next HBIN in addition to indicating
its distance from the first HBIN.

Within each HBIN can be found a series of variable length
cells. These cells are stored in simple length-prefix nota-
tion where each cell’s total length (including the 4-byte
length header) is a multiple of 8 bytes. Figure 2 illustrates
the layout of a typical HBIN. The data portion of each
cell contains either value data or one of several different
record types. Possible record types include: key (NK)
records, subkey-lists, value-lists, value (VK) records, se-
curity (SK) records, big data records, and big data indirect
offset cells.

Parent NK

Subkey-List

Child NK 1

Child NK 2

Child NK 3
...

Figure 3: Key-Related Pointers

5 Keys

The data structure which ties all of these elements together
is the key record. NK records contain a number of offset2

fields to other data structures. These referenced structures
may exist in any HBIN. In order to keep track of a key’s
subkeys, NK records reference subkey-lists which in turn
reference a set of other NK records. NK records also store
the offset of their parent NK record. These key-related
pointers are illustrated in Figure 3. NK records also con-
tain pointers to value-lists which in turn reference value
(VK) records.

A final significant detail related to NK records is the
inclusion of a modification time (MTIME) field. NK
records are the only known record type, aside from the
hive header, to contain any kind of time stamp. This field
appears to be updated any time the NK record itself is
updated (with some exceptions, detailed later), which in-
cludes changes to values and immediate subkeys.

6 Subkey and Value Lists

Subkey-lists are simple lists of pointers/hash tuples,
sorted in order by the hash value, which is based on the
referenced subkey names. Multiple types of subkey-lists
have been used in different versions of Windows, but they
appear to retain the same basic structure. In early ver-
sions, including Windows 2000, subkey-lists use records
with a magic number of “lf”, where the hash in each el-
ement is calculated simply by taking the first four charac-
ters of the associated subkey’s name. “lh” records appear
to be identical except that they use a more intelligent hash
algorithm which is detailed in Appendix C.

Sometimes, when a large number of subkeys exist, Win-
dows uses an “ri” subkey list type which implements an

2Nearly all offset values stored in cell records (whether in the NK
records or elsewhere) are measured in bytes from the beginning of the
first HBIN, not from the beginning of the file.

2



9 VALUE DATA STORAGE

Parent NK

Value-List

Value 1 Data 1

Value 2 Data 2

Value 3 Data 3

...

Figure 4: Value-Related Pointers

indirect block system, similar to what is found in some
filesystems. These subkey-lists do not include a hash
value in each list element and only reference additional
subkey-lists in a tree structure. The leaf elements of these
trees tend to be “lh” or “ li” record types. The “li” record
type seems to be identical to “ri” records in structure ex-
cept that they reference keys rather than additional subkey
lists.

Value-lists are similar to subkey-lists, but do not have hash
values associated with them and are not sorted in any par-
ticular order. Finally, VK records contain minimal meta-
data about a single value and store the offset to yet another
cell which contains the value’s data. See Figure 4 for a
sample illustration.

7 Security Records

A small number of security records are stored in a given
registry hive and are referenced by NK records. SK
records include a short header followed by a Windows
security descriptor which defines permissions and own-
ership for local values and/or subkeys. (See [1, 7] for
more information on security descriptors.) Multiple NK
records may reference a single SK record which in turn
stores a reference count to simplify deallocation.

8 Example: Keys and Values

Let us present an example to tie together some of the data
structures discussed thus far. Suppose we had a simple
registry hive rooted at a key named “parent”, which has
subkey named “child”. Also suppose this subkey has a
value stored under it named “item” which is a string, and
this value’s data is the string “datum”. The user perspec-
tive of this structure is illustrated in Figure 5. The reg-
istry records needed to support this simple path are illus-
trated in Figure 6. In order to look up\parent\child’s

"parent"

"child"

"item" "datum"

Figure 5: Simple Example: Logical View

"parent"

Subkey-List

"child"

Value-List

"item" "datum"

Figure 6: Simple Example: Physical View

item value, one would first need to findparent, and lo-
cate its subkey-list. The hash value for “child” would
be calculated and used to quickly narrow the list of NK
records needing to be checked (i.e., the set of all colliding
hashes). Searching this reduced list of NK offsets would
then yield an NK record which had the proper name. One
would then traverse thechild record’s value list sequen-
tially, checking each referenced VK record to locate the
proper value. If theitem value’s data was desired, the
data pointer would be followed to the data record, unless
a specific flag is set indicating that the data is stored in the
offset field of the VK record, in which case it would be
retrieved from there.

9 Value Data Storage

In most cases, value data is stored very simply in a cell
with no real structure, other than that dictated by the data
type (discussed later). However, if a value is four or fewer
bytes long, Windows may choose to store the data in the
offset field of the VK record, rather than allocating a new
data cell to store it. If this occurs, the highest bit of the
data size field (stored in the VK record) will be set to 1.

In addition, starting with Windows XP, value data records
may be fragmented in to multiple cells [8] using “big
data” records. According to [17], Windows XP and later
will look for a big data record under the following condi-
tions: the registry major/minor version is 1.4 or later and
the data size is greater than 16344 bytes in length. At that

3



11 REGISTRY DELETION BEHAVIORS

Big Data (sig. "db")

Cell of N Offsets

Fragment 1
(16344 bytes)

Fragment 2
(16344 bytes)

...

Fragment N
(≤ 16344 bytes)

Figure 7: Big Data Linking

point, Windows will attempt to validate the cell referenced
by the value record as a big data record. The big data
record will indicate the number of data chunk fragments
are stored on disk as well as a pointer to an indirect block
of offsets for the fragment cells. Figure 7 demonstrates
how the data fragments may be located and Appendix A
contains more precise information on how to interpret the
big data records themselves.

10 Value Data Types

Registry values can be one of several different types.
The data type of a value is stored as a 32-bit integer in
the VK record, and based on this data type, the data cell
should adhere to a specific format. The known registry
data types are named as follows: REG_NONE, REG_SZ,
REG_EXPAND_SZ, REG_BINARY, REG_DWORD,
REG_DWORD_BIG_ENDIAN, REG_LINK,
REG_MULTI_SZ, REG_RESOURCE_LIST,
REG_FULL_RESOURCE_DESCRIPTOR,
REG_RESOURCE_REQUIREMENTS_LIST, and
REG_QWORD. However, note that in some instances,
Windows and third-party software does not honor this
convention and instead uses the data type field in the
VK record for other purposes. (One example is in the
Windows SAM hive, where this field is used to store user
IDs.)

The REG_NONE and REG_BINARY types are
used to store arbitrary data without structure or
with unspecified structures. The REG_DWORD,
REG_DWORD_BIG_ENDIAN, and REG_QWORD are
all integer types which store values as 32-bit little endian,
32-bit big endian, and 64-bit little endian, respectively3.

3It is not known if the endianness of any of the integer types, or

The REG_SZ, REG_EXPAND_SZ, and REG_LINK
types are all stored as UTF-16 little endian strings.
REG_SZ is a basic string type, REG_EXPAND_SZ is
similar to REG_SZ, except that it may contain references
to environment variables with a “%VARIABLENAME%”
syntax. Finally, the REG_LINK type is used to store
symbolic links.

More structured data types include the
REG_MULTI_SZ, REG_RESOURCE_LIST,
REG_FULL_RESOURCE_DESCRIPTOR, and
REG_RESOURCE_REQUIREMENTS_LIST types.
REG_MULTI_SZ is a list of strings where each is stored
in UTF-16 little endian and is NUL terminated. (Because
each character in UTF-16 is at least two bytes wide, one
NUL character is represented as “\x00\x00”.) The end of
a REG_MULTI_SZ list is also marked with a NUL char-
acter, resulting in a characteristic four byte sequence of
zero bytes (two to terminate the final string, and two more
to terminate the list). The REG_RESOURCE_LIST,
REG_FULL_RESOURCE_DESCRIPTOR, and
REG_RESOURCE_REQUIREMENTS_LIST types
are used to store hardware information, in a series of
nested lists [9] whose formats are currently unknown.

11 Registry Deletion Behaviors

The most basic behavior to understand in analyzing reg-
istry deletions is how the registry manages unallocated
cells. As new records are added and free space is allo-
cated, existing empty cells may be split if they are much
larger than the required space. However, as cells are later
deallocated, any adjacent unallocated cells would need to
be merged in order to prevent serious fragmentation. In-
deed, this is how the registry manages unallocated space.
When a given cell is decommissioned, the cells directly
before and after are checked. If either (or both) of these
cells are already unallocated, the cells are merged together
by updating the header length value of the earliest cell.
The other cells’ lengths are not updated. This process
makes recovery somewhat complicated, since structures
cannot be found at specific offsets within a cell.

We have found that the majority of structures stored in
cells are preserved when they are deallocated; however,
certain key pieces of information are explictly destroyed
or partially corrupted during deletion, and these behaviors
vary from record type to record type. Here we outline the
changes that take place for each record.

Since registry keys act as the glue that ties registry ele-
ments together, they are of primary importance. When a
key is deleted, its NK record is changed in a number of
ways. For one, the pointer which references subkey-lists
is destroyed (overwritten with0xFFFFFFFF) and the stored

even the UTF-16 strings, would be different on a big endian Windows
architecture, such as NT on Alpha.

4



13 ACKNOWLEDGEMENTS

Before deletions:

Element A Element B Element C Element D

After B is deleted:

Element A Element C Element D Element D

After D is deleted:

Element A Element C Element D Element D

After A is deleted:

Element C Element C Element D Element D

Figure 8: Hypothetical Subkey Deletion Sequence

number of subkeys is set to 0. In addition, the pointer to
a key’s security record is similarly destroyed. If a key has
subkeys, the record’s modification time is updated, other-
wise it is not. The only known exception to this rule is
found on Windows 2000 where a key with subkeys does
not have its modification time updated at all when it is
deleted.

When analyzing changes to subkey-lists, we must con-
sider two cases: first, where the parent key (and therefore
all subkeys) is deleted; and second, where some number
of subkeys are deleted. As it turns out, these two cases are
actually very similar. When a single subkey is deleted,
the element is removed from the list and the resulting list
is rewritten to the cell. The remaining free space in the
cell is not wiped and in no tests was the cell shortened
to conserve wasted space. Consequently, a number of
subkey-list elements (each 8 bytes in size) can be found
at the end of a subkey-list that has been shortened. Un-
fortunately, this information is typically not very useful
because in most cases the last element in the subkey-list
will be repeated over and over, unless it was deleted mid-
way through a set of deletions, at which point the second
to last element would begin the repetitions as internal el-
ements continue to be deleted. Figure 8 illustrates how a
subkey-list would look at each step if elements B, D, and
A were removed, in that order, from an original list of:
(A,B,C,D). When it comes to deletion of a parent key, our
experiments indicated that all children are merely deleted
in sequence with some unknown or arbitrary order. This
causes the subkey-list to be repeatedly rewritten with each
successive deletion, corrupting the majority of records in
most cases. The number of elements in the subkey-list is
also reduced to 0 upon deletion of a parent key.

The changes which occur to value-lists during deletion
differ somewhat from those of subkey-lists, even though
their structures are almost identical. As with subkey-lists,
when values are deleted from a key the elements are re-
moved and the list is simply rewritten. Here, slack space
is also not wiped and value-list cells do not appear to be

shortened as elements are removed, which matches the
general behavior of subkey-lists. However, when a value-
list’s parent NK record is deleted, value-lists are not modi-
fied beyond having their holding cell deallocated; all links
to the (now deleted) VK records are left intact.

In general, VK records and the data cells they reference
are not altered when they are deleted. The only exception
to this rule is on Windows 2000 where the first 4 bytes of
these cells (for both VK records and data cells) are over-
written with0xFFFFFFFF. In the case of the VK record, this
corrupts both the two-byte magic number and the two-
byte length for the value’s name. In the case of a data
cell, there’s no way of knowing what data would be lost.
Fortunately, this behavior was only observed on Windows
2000 and may be indicative of a bug on that platform.

Finally, there are few changes associated with the deletion
of security records. Of course since these records may be
referenced by multiple keys, they are only deleted when
all keys referencing them are also deleted or are set to
reference other SK records. Our observations indicate that
nothing changes in SK records when this occurs. In fact,
not even the reference count (which would store a value
of 1 before the final parent key deletion) was updated to 0
when the SK record was deallocated.

Information on proposed methods for recovering deleted
registry data may be found in [11, 19].

12 Future Work

While the majority of the registry data structures are
largely understood, there are always nagging details that
remain unexplained. Here we list a number of them and
invite readers to help us complete our knowledge of the
registry format.

• A recent, detailed source of information in the mas-
ter’s thesis by Peter Norris[13] should be compared
against the results here and any differences sorted
out.

• Determine purpose of remaining NK record flags.

• Reveal format of free cell hive structure mentioned
in [8].

• Investigate any changes brought by Windows 7.

13 Acknowledgements

We would like to thank the following individuals for their
invaluable contributions to this paper: Harlan Carvey, Ja-
son DeMent, Brendan Dolan-Gavitt, George Gal, Jason
Morgan, Joan Morgan, Jeffrey Muir, Matthieu Suiche, and
Jolanta Thomassen.

5



14 REVISION HISTORY

14 Revision History

DATE VERSION COMMENTS

2009-06-09 0.4 Expanded information on
big data records. More ref-
erences. Added algorithms
to appendices.

2009-05-22 0.3.1 Fixed a mistake regarding
big data elements. Added
a bit of info about volatile
keys in the appendix.

2009-05-22 0.3 Thanks to Matthieu
Suiche, Jeffrey Muir, and
Jolanta Thomassen with
help improving subkey list
structure, key flags, value
flags, and regf header
information.

2008-12-01 0.2 Improved descriptions of
subkey-lists and added sec-
tion on values formats.

2008-08-08 0.1 Initial Release.

6



REFERENCES REFERENCES

References

[1] Keith Brown. What Is A Security Descriptor. pluralsite.com, 2005. Ported: 2005-01-18. Accessed: 2008-03-09.
Available at: http://www.pluralsight.com/wiki/default.aspx/Keith.GuideBook/WhatIsASecurityDescriptor.html.

[2] clark@hushmail.com. NT Security - Registry Structure. beginningtoseethelight.org,
http://www.beginningtoseethelight.org/ntsecurity/37AB35307A7D52ED, 2005. Available at:
http://www.beginningtoseethelight.org/ntsecurity/37AB35307A7D52ED.

[3] B. D. WinReg.txt. Available at: http://home.eunet.no/%7epnordahl/ntpasswd/WinReg.txt.

[4] Brendan Dolan-Gavitt.Forensic analysis of the Windows registry in memory. DFRWS, 2008. Available at:
http://dfrws.org/2008/proceedings/p26-dolan-gavitt.pdf.

[5] Scott Dorman. Volatile Registry Keys. 2007. Available at:
http://geekswithblogs.net/sdorman/archive/2007/12/24/volatile-registry-keys.aspx.

[6] Stefan Kuhr. Registry Symbolic Links. The Code Project, 2005. Available at:
http://www.codeproject.com/KB/system/regsymlink.aspx.

[7] Microsoft. SECURITY_DESCRIPTOR Structure. Last Updated: 2008-02-19. Available at:
http://msdn2.microsoft.com/en-us/library/aa379561.aspx.

[8] Microsoft. Kernel Enhancements for XP – Registry Enhancements. Microsoft, 2003. Available at:
http://www.microsoft.com/whdc/archive/XP_kernel.mspx#ELC.

[9] Microsoft. Windows Registry Information for Advanced Users. Microsoft, february 4, 2008 edition, 2008.
Available at: http://msdn.microsoft.com/en-us/library/ms724836%28VS.85%29.aspx.

[10] Microsoft. Predefined Keys. Microsoft, http://msdn.microsoft.com/en-us/library/ms724836 Available at:
http://msdn.microsoft.com/en-us/library/ms724836

[11] Timothy D. Morgan. Recovering Deleted Data From the Windows Registry. Available at:
http://www.sentinelchicken.com/research/registry_recovery/.

[12] Petter Nordahl-Hagen. Offline NT Password & Registry Editor. Available at:
http://home.eunet.no/%7epnordahl/ntpasswd/.

[13] Peter Norris. The Internal Structure of the Windows Registry. 2009. Available at:
http://amnesia.gtisc.gatech.edu/%7emoyix/suzibandit.ltd.uk/MSc/.

[14] David B. Probert. Windows Kernel Internals: NT Registry Implementation. Available at: http://www.i.u-
tokyo.ac.jp/edu/training/ss/lecture/new-documents/Lectures/09-Registry/Registry.pdf.

[15] Mark Russinovich. Inside the Registry. Windows NT Magazine, Microsoft, may 1999 edition, May 1999.
Available at: http://www.microsoft.com/technet/archive/winntas/tips/winntmag/inreg.mspx?mfr=true.

[16] Richard Sharpe. editreg.c. 2002. Available at: http://websvn.samba.org/cgi-
bin/viewcvs.cgi/trunk/source/utils/editreg.c?rev=2&view=markup.

[17] Matthieu Suiche. Undocumented Windows Vista and later registry secrets. June 2009. Available at:
http://www.msuiche.net/2009/06/07/windows-vista-and-later-registry-secrets/.

[18] Samba Development Team.Samba GIT Sources: Registry Library. www.samba.org, 2008. Available at:
http://gitweb.samba.org/?p=samba.git;a=tree;f=source/lib/registry;h=21934b5f658009ff0383f6aed41b102013b5b046;hb=v4-
0-stable.

[19] Jolanta Thomassen.Forensic Analysis of Unallocated Space in Windows RegistryHive Files. University of
Liverpool, 2008. available at: http://www.sentinelchicken.com/research/thomassen_registry_unallocated_space/.

[20] Nigel Williams. dosreg.c. c. 2000. Available at: http://www.wednesday.demon.co.uk/dosreg.html.

7



REFERENCES REFERENCES

Appendix A: Registry Data Structures

REGISTRY HEADER/BASE BLOCK

OFFSET SIZE TYPE DESCRIPTION

0x0 4 String (“regf”) Magic number
0x4 4 Unsigned Integer Sequence Number 1: matches next field if hive was properly synchro-

nized.
0x8 4 Unsigned Integer Sequence Number 2: matches previous field if hive was properly syn-

chronized.
0xC 8 Unsigned Integer 64-bit NT time stamp
0x14 4 Unsigned Integer Major version
0x18 4 Unsigned Integer Minor version
0x1C 4 Unknown Unknown (type?)
0x20 4 Unknown Unknown (format?)
0x24 4 Offset Pointer to the first key record
0x28 4 Offset Pointer to start of last hbin in file
0x2C 4 Unknown Unknown (always 1)
0x30 64 String Hive file name?
0x70 16 GUID Unknown
0x80 16 GUID Unknown
0x90 4 Unsigned Integer Unknown (flags?)
0x94 16 GUID Unknown
0xA4 4 Unsigned Integer Unknown
0xA8 340 Unknown Unknown (reserved?)
0x1FC 4 Unsigned Integer Checksum of data to this point in header. See Appendix C.
0x200 3528 Unknown Unknown (reserved?)
0xFC8 16 GUID Unknown
0xFD8 16 GUID Unknown
0xFE8 16 GUID Unknown
0xFF8 4 Unknown Unknown
0xFFC 4 Unknown Unknown

HIVE BINS

OFFSET SIZE TYPE DESCRIPTION

0x0 4 String (“hbin”) Magic number
0x4 4 Unsigned Integer This bin’s distance from the first hive bin
0x8 4 Unsigned Integer This hive bin’s size (multiple of 4096)
0xC 16 Unknown Unknown
0x1C 4 Unsigned Integer Relative offset of next hive bin (should be the same value as

at offset 0x8)
0x20..[bin size] variable Structure List List of cells used to store various records (see below)

CELLS

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0 4 Signed Integer Cell length (including these 4
bytes)

Negative if allocated, positive if
free. If a cell becomes unallo-
cated and is adjacent to another un-
allocated cell, they are merged by
having the earlier cell’s length ex-
tended.

0x4 variable varies Contains one of: NK record,
VK record, SK record, subkey-
list, value-list, or raw data blocks
(see below)

8



REFERENCES REFERENCES

SECURITY (SK) RECORDS

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0 2 String (“sk”) Magic number
0x2 2 Unknown Unknown
0x4 4 Offset Pointer to previous SK record
0x8 4 Offset Pointer to next SK record
0xC 4 Unsigned Integer Reference count Not set to 0 when deleted,

typically left at 1
0x10 4 Unsigned Integer Size of security descriptor
0x14 varies Windows security

descriptor
Data structure which contains owner
SID, group SID, DACL, SACL, and
control flags. More information can
be found in [1, 7].

KEY (NK) RECORDS

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0 2 String (“nk”) Magic number
0x2 2 Flags See Observed Key Flags table

below
0x4 8 Unsigned Integer 64-bit NT time stamp Only updated if this key has sub-

keys. On Win2K, not updated even
in that case.

0xC 4 Unknown Unknown
0x10 4 Offset Parent NK record
0x14 4 Unsigned Integer Number of subkeys (stable) Set to 0
0x18 4 Unsigned Integer Number of subkeys (volatile

[4])
0x1C 4 Offset Pointer to the subkey-list (sta-

ble)
Set to 0xFFFFFFFF

0x20 4 Offset Pointer to the subkey-list
(volatile [4])

0x24 4 Unsigned Integer Number of values
0x28 4 Offset Pointer to the value-list for

values
0x2C 4 Offset Pointer to the SK record Set to 0xFFFFFFFF
0x30 4 Offset Pointer to the class name
0x34 4 Unsigned Integer Maximum number of bytes in

a subkey name (unconfirmed)
Set to 0

0x38 4 Unsigned Integer Maximum subkey class name
length (unconfirmed)

0x3C 4 Unsigned Integer Maximum number of bytes in
a value name (unconfirmed)

0x40 4 Unsigned Integer Maximum value data size
(unconfirmed)

0x44 4 Unknown Unknown (possibly some sort
of run-time index)

0x48 2 Unsigned Integer Key name length
0x4A 2 Unsigned Integer Class name length
0x4C variable String The key name; stored in

ASCII and is typically NUL
terminated

9



REFERENCES REFERENCES

SUBKEY-LISTS

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0 2 String Magic number (“lf”, “lh”,
“ri”, or “li”)

0x2 2 Unsigned Integer Number of elements in this
subkey-list

Set to 0

0x4 4 or 8 (each) Structure List Multiple subkey-list el-
ements; see below for
contents

List of elements deleted in
some sequence, causing many
old elements to be lost.

SUBKEY-LIST ELEMENTS FOR LF AND LH TYPES

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0 4 Offset Pointer to NK record
0x4 4 Unsigned Integer Hash value computed differently depending on

subkey-list type (“lf” or “lh”)

SUBKEY-LIST ELEMENTS FOR RI AND LI TYPES

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0 4 Offset If the type is “ri” then this is a pointer to another subkey-list
record. Otherwise, it points to a subkey.

VALUE (VK) RECORDS

OFFSET SIZE TYPE DESCRIPTION DELETION

NOTES

0x0 2 String (“vk”) Magic number Under Win2K,
typically over-
written with
0xFFFF

0x2 2 Unsigned In-
teger

Value name length Under Win2K,
typically over-
written with
0xFFFF

0x4 4 Unsigned In-
teger

Data length

0x8 4 Offset Pointer to data
0xC 4 Enumeration Value type; one of: REG_NONE (0),

REG_SZ (1), REG_EXPAND_SZ (2),
REG_BINARY (3), REG_DWORD (4),
REG_DWORD_BIG_ENDIAN (5), REG_LINK
(6), REG_MULTI_SZ (7), REG_RESOURCE_LIST
(8), REG_FULL_RESOURCE_DESCRIPTOR (9),
REG_RESOURCE_REQUIREMENTS_LIST (10),
REG_QWORD (11). In some cases, this convention
is not followed and other nonstandard values are
used.

0x10 2 Flags If the 0 bit is set, the value name is in ASCII, other-
wise it is in UTF-16LE.

0x12 2 Unknown Unknown
0x14 variable String The value name; stored in ASCII and is typically

NUL terminated

VALUE-LISTS

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0..[4*(num. values)] 4 Offset List of pointers to VK records;
Appear in order of value creation

List left intact if parent key is
deleted. List simply rewritten
over the top of original when el-
ements are removed.

10



REFERENCES REFERENCES

NORMAL DATA BLOCKS

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0 variable Raw Data Data type and structure depends on
type indicated by VK record.

On Win2K, first 4 bytes overwritten
with 0xFFFFFFFF.

BIG DATA RECORDS

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0 2 String (“db”) Magic number Not yet studied.
0x2 2 Unsigned Integer Number of data fragments Not yet studied.
0x4 4 Offset Pointer to big data indirect cell Not yet studied.
0x8 4 Unknown Unknown (unused?) Not yet studied.

BIG DATA INDIRECT CELLS

OFFSET SIZE TYPE DESCRIPTION DELETION NOTES

0x0..[4*(num. fragments)] 4 Offset To a data fragment Not yet studied.

Appendix B: Record Flags and Constants

VALUE DATA TYPES

NAME ENUM. VALUE FORMAT SUMMARY

REG_NONE 0x0 Unknown. Apparently treated like
REG_BINARY.

REG_SZ 0x1 UTF-16 little endian string
REG_EXPAND_SZ 0x2 UTF-16 little endian string with system path

variable (e.g., “%SYSTEMROOT%”) escapes
REG_BINARY 0x3 Raw data
REG_DWORD 0x4 32 bit, little endian integer
REG_DWORD_LITTLE_ENDIAN 0x4 Microsoft alias for REG_DWORD, though it

is not clear what endian format a big endian
Windows system (e.g. NT on Alpha) would
default to.

REG_DWORD_BIG_ENDIAN 0x5 32 bit, big endian integer
REG_LINK 0x6 A symbolic link, stored as a UTF-16 little en-

dian string
REG_MULTI_SZ 0x7 A list of UTF-16 little endian strings. Each

string is NUL (“\x00\x00”) terminated, and
the list itself is NUL terminated as well (re-
sulting in a total of four 0-bytes at the end of
the data).

REG_RESOURCE_LIST 0x8 “A series of nested arrays” of unknown for-
mat. See [9].

REG_FULL_RESOURCE_DESCRIPTOR 0x9 “A series of nested arrays” of unknown for-
mat. See [9].

REG_RESOURCE_REQUIREMENTS_LIST0xA “A series of nested arrays” of unknown for-
mat. See [9].

REG_QWORD 0xB 64 bit, little endian integer

11



REFERENCES REFERENCES

OBSERVED KEY FLAGS

FLAG DESCRIPTION

0x4000 Unknown; shows up on normal-seeming keys in Vista and W2K3 hives.
0x1000 Unknown; shows up on normal-seeming keys in Vista and W2K3 hives.
0x0080 Unknown; shows up on root keys in some Vista "software" hives.
0x0040 Predefined handle; see: [10]
0x0020 The key name will be in ASCII if set; otherwise it is in UTF-16LE.
0x0010 Symlink key; see: [6]
0x0008 This key cannot be deleted.
0x0004 Key is root of a registry hive.
0x0002 Mount point of another hive.
0x0001 Volatile key; these keys shouldn’t be stored on disk, according to: [5]

Appendix C: Algorithms

Base Block Hash Algorithm

The following algorithm is used in the “regf” header base block:

let B be the first 508 bytes of the registry base block
let H be a 32-bit value
H = 0
for each 32-bit group, C, in B do

H = H ⊕ C

H = reverseByteOrder(H) /* interpret 4-byte groups as little-endian */
return H

“ lh” Subkey-List Hash Algorithm

The following algorithm was extrapolated from Samba sourcecode[18]. It has not been verified for correctness in all
situations. In particular, it is not known precisely how subkeys with UTF-16LE names would be processed since it
does not appear that Samba handles this case.

let N be the subkey name
let H be a 32-bit value
H = 0
N = uppercase(N)
for each byte, B, in N do

H = (H × 37) mod 232

H = (H + B) mod 232

return H

12


