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Abstract

It has long been known to researchers that address spoofing on the Internet is a serious prob-

lem. While a great deal of effort has been put into finding theoretical and practical solutions,

spoofed attacks are still globally endemic. They represent a simple nuisance to many, but a

business-halting bane to others. Enter IPv6. IPv6 is the next generation of the Internet proto-

col designed to alleviate the existing global address shortage and improve the scalability and

extensibility of the aging IPv4 protocol. This new protocol provides an enormous 128-bit ad-

dress space, which should provide enough addresses for several decades, if not centuries, of

Internet expansion. In this paper, we propose methods which utilize the large IPv6 address

space to mitigate spoofed attacks.
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1 Introduction

It has long been known to researchers that address spoofing on the Internet is a serious prob-

lem. While a great deal of effort has been put into finding theoretical and practical solutions,

spoofed attacks are still globally endemic. They represent a simple nuisance to many, but a

business-halting bane to others.

Enter IPv6. IPv6 is the next generation of the Internet protocol designed to alleviate the

existing global address shortage and improve the scalability and extensibility of the aging

IPv4 protocol. This new protocol provides a huge 128-bit address space which should provide

enough addresses for a great deal of Internet expansion. Individual Internet users can easily

obtain their own 80-bit block of addresses if they currently have a single IPv4 address. This

means it will be possible for any user to effectively hide a system in such an address space

without ever being found. That is, if no DNS records point to them, and they don’t respond to

broadcast requests, it would be effectively impossible to find a host through brute force probes.

To put this into perspective, let us suppose an attacker can scan addresses of a network at

232 (more than four billion) packets/second (which is probably a stretch for today’s fastest

routers [45]). It would take on average, 247 seconds (or 4.5 million years) to find a single

live address in a range of 280 addresses. For this reason, the only way to find systems that do

not pick an obvious IPv6 address would be to query some name resolution service (such as the

DNS). In this paper, we propose methods which utilize the large IPv6 address space to mitigate

spoofed attacks by forcing clients to always use the DNS prior to submitting service requests.

The remainder of this chapter contains the problem statement and some definitions of com-

monly used terms. Chapter 2 describes and classifies the popular types of attacks used on the

current IPv4 Internet. Chapter 3 explores the impact IPv6 will have on scanning and spoofing

attacks. Chapter 4 gives an overview of the novel system proposed for combating spoofed at-

tacks in IPv6. Chapter 5 provides analysis of attacks against the proposed system, as well as

how it can be used to mitigate current attacks. Chapter 6 proposes some solutions for the en-

gineering challenges faced with implementing the system and describes a prototype software

implementation used in testing. Chapter 7 describes experiments performed with the proto-

type software implementation, and provides results of these tests. Finally, chapter 8 offers

some concluding remarks.
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1.1 Problem Statement

Spoofed denial of service attacks have plagued the Internet for a number of years, and show no

signs of abating. Research into mitigation techniques has apparently not led to a financially

viable solution, and new attacks have been discovered in the wild without being widely antic-

ipated. With the advent of a new Internet protocol, the world stands in a unique position to

get ahead of this criminal activity by fundamentally changing the way the Internet works and

being prepared for the attacks to come. Whether by intention or chance, the vastly increased

Internet address space in IPv6 has done so. We seek to use this fundamental shift in resource

availability to develop a novel, lower cost solution to mitigating spoofed attacks.

1.2 Definitions

Network and System Security

Botnet Slang for robot network. Also referred to as a network of zombies. These are a

set of compromised machines, controlled illegally by an attacker, and are typically

used for conducting denial of service attacks and storage of contraband [36].

DoS Denial of service. An attack that typically involves the flooding of a victim com-

puter with large numbers of requests. The intent is to deny service to legitimate

users of the system.

DDoS Distributed DoS. An attack using many different attacking systems, which are

almost always members of a botnet.

Zero-day A vulnerability or exploit that has not yet been announced to the public or soft-

ware vendors. Thus, it has been public for 0 days. Development of such exploits al-

lows malicious attackers to compromise system security before any patch or work-

around is available [83].

Zombie A compromised computer system often used in spoofed attacks and other illegal

activity.
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Cryptography

CFB Ciphertext feedback. A mode of encryption that allows a block cipher to act as a

stream cipher. In this mode, ciphertext is fed back into the block cipher’s input,

thereby allowing the plaintext to influence the output of future blocks [66].

Confusion An essential property of cryptographic primitives which is often implemented through

the use of a substitution operation (called the S-box). The purpose of confusion is

to make the statistical relationship between the plaintext, key, and ciphertext a

very complex one [67].

Diffusion A second important property of cryptographic primitives which deals with how

evenly specific output values depend on every input value. Diffusion serves to

distribute the information of inputs throughout the ciphertext, thereby reducing

the statistical significance of specific features of a plaintext or key. (See [67] for

more information.)

HMAC A hashed message authentication code. An adaptation of a secure one-way hashing

function which uses a secret shared key. HMACs may be used to provide integrity

and authentication for messages of variable length. (See [43] for more informa-

tion.)

IPsec Internet protocol security. A layer three protocol designed by the IETF for authen-

ticating and encrypting communications on the Internet.

OFB Output feedback. A mode of encryption that allows a block cipher to act as a

stream cipher. In this mode, the output of the block cipher is fed back into the

block cipher’s input prior to being combined with the plaintext. This means the

plaintext encrypted in one round of this mode will not influence future rounds of

encryption [66].

OTP One-time password. A form of authentication used to thwart passive eavesdrop-

ping of credentials. Passwords are used only once and each new password is

typically generated via some synchronized random number generator or series of

hashes at both a client and server.

PKI Public Key Infrastructure. An authentication framework generally designed to
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authenticate public keys by associating them with aspects of a user’s identity. Such

associations are often called certificates.

Miscellaneous

6to4 A transitional tunneling technology allowing IPv6 systems to automatically trans-

mit packets to other IPv6-enabled systems over the IPv4 Internet. (For more infor-

mation, see RFC 3056 [14].)

AAAA The DNS record type which maps domain names to IPv6 addresses. (See RFC 3596

for more information [77].)

Anycast A form of routing where the “closest” or “best” member of a group is sent a packet.

Flow label A field in a packet used to differentiate several flows of traffic between two hosts.

IPv6 flow labels are defined in RFC 3697 [60].

IETF The Internet Engineering Task Force is a part of the Internet Society which devel-

ops technical Internet standards and best practices.

LRU Least recently used. An algorithm for removing an object from a cache based on

when objects were last used.

2 Survey and Discussion of Current Spoofed Attacks

In this section, we will first list and describe a number of specific spoofed attacks and follow

with a general method of classification for DoS attacks. While extensive, the list below cannot

be considered exhaustive.

2.1 Current and Popular Attacks

2.1.1 Spoofed Scans

Idle Scan

While the most commonly seen spoofed attacks are designed for resource-consumption, there

are a few that can be used to gather information about target systems. Perhaps one of the most
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effective of these is the idle scan. An idle scan is a spoofed port scan which uses an unwitting

third party host as a reflector. Many IP implementations use a single sequential counter for

the ID field of all outgoing packets. A global counter such as this leaks information to potential

attackers about the number of packets being sent by a host, and this can be used to scan other

systems.

The specific idle scan attack (described in [3, 30]) requires an attacker to first find a system

running a vulnerable IP implementation which currently utilizes few network resources (hence

the term “idle”). The attacker then sends a TCP SYN packet to the victim he wishes to scan,

with a source address matching that of the idle host. If the victim’s port is open, it will respond

with a SYN/ACK packet. When the idle host receives a SYN/ACK for a connection it did not

start, it will respond with a TCP RST. This will use up one of the IP IDs in its global sequence.

On the other hand, if the victim’s port is closed, it will respond with a RST evoking no response

from the idle host. If an attacker can detect the difference between the two through the idle

host, then he can obtain the results of the scan without ever giving away his real IP address.

This detection can be accomplished by continuously pinging the idle host while the scan is

taking place. Whenever a “hole” is found in the IP ID sequence, one can assert with high

probability that the most recent port scanned is open.

IP Source Routing

Another classic technique used in spoofing attacks is the utilization of IP source routing head-

ers (see [57]). By using source routing options, an attacker can bypass naïve firewall rules

and carry on spoofed conversations with systems that reverse the source routing options [48].

While quite powerful, these spoofing attacks have the drawback that the attacker’s IP address

is ultimately sent to the victim, though not in the normal source field. In addition, this vul-

nerability in the IP protocol has been known for some time, and most firewalls strip or drop

packets which contain source routing options. Many operating systems are also configured by

default to ignore these options.

2.1.2 Denial of Service Attacks

While spoofed attacks not designed for DoS are technically interesting, they are not all that

popular on today’s Internet. The majority of spoofed attacks are designed to exhaust a vic-

tim’s resources, and come in a variety of flavors. For surveys and case studies of the relative
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popularity of the following attacks, see [4, 37, 52, 53].

Reflected Attacks

Perhaps one of the more classic of DoS attacks the smurf attack [25]. This is one form of

an amplification attack, which can be very effective at saturating a victim’s connection. This

attack utilizes a third party network, which contains hosts that respond to broadcast ping

(ICMP echo_request) packets. An attacker spoofs a ping packet to such a broadcast address,

with the source address of the victim. When the third party network responds, it will likely

produce many more packets than the attacker originally sent, which can amplify the attack

by a significant factor. Fortunately, over the last several years, network administrators have

become more aware of the dangers of allowing broadcast packets into their networks from

the Internet at large. Consequently, finding amplification reflectors has become more difficult

(though not impossible) for attackers using smurf.

Similar to the smurf attack is fraggle. Instead of using ICMP echo_request packets to induce

a response from a reflector network, the fraggle attack uses UDP packets directed at the echo

service [58]. While fraggle attacks are as effective as smurf attacks, given a network supporting

broadcast and UDP echo, they are also easier for victims to block since fewer people rely on

UDP echo for network testing.

Many other protocols are susceptible to reflection attacks. Most do not provide an attacker with

quite as much control over response packet sizes or have as large of an amplification effect, but

they can still be quite devastating. Some examples of these include TCP handshake reflection

and DNS reflection. Many of these are described in detail in a recent Internet draft [34] and in

[2, 8], and at least one case study of a TCP handshake reflection attack has been published [31].

While using a reflection attack can be a very powerful way to exhaust a victim’s CPU or band-

width resources, they are also typically very easy to filter if done far enough upstream of the

victim. This is because the final packets reaching the victim are generally a response to pack-

ets never previously sent (e.g., ping replies where no ping was sent) and they come from a

specific array of hosts (the reflectors) which are not spoofing their own addresses. By working

with service providers, a defender can generally mitigate such attacks pretty quickly.

Direct Floods

Another form of spoofed attack, which has proven to be very effective against TCP, is the SYN

flood [23]. This simple attack involves flooding a victim with a large number of spoofed SYN
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packets. Victim systems will reply with a SYN/ACK as the second step of the TCP handshake,

subsequently storing a record of the transaction for later verification. Normally, clients will

finish the handshake with an ACK packet which will establish the connection, but with a

spoofed SYN flood, no ACK will ever come. If an attacker sends SYN packets fast enough,

then the victim will run out of memory resources before it can time out the spoofed connection

requests. Eventually, victim servers will be forced to drop some handshake records, some of

which will be those of valid clients. This attack is particularly effective because it is usually

impossible to tell the difference between malicious and non-malicious SYN packets when they

are initially received.

SYN floods were used with great effectiveness in early February of 2000 to shut down several

large Internet companies [71]. Since then such attacks have become less effective, as miti-

gations such as SYN cookies [12] have been developed and implemented in several operating

systems. SYN cookies rely on a cryptographic checksum of connection parameters (which is

embedded in SYN/ACK replies) to authenticate connections when the third step of the hand-

shake occurs. This allows servers to forego storing any information about half-open connec-

tions, which greatly increases the rate at which SYNs can be handled with limited memory.

Unfortunately, not all TCP implementations use SYN cookies, so SYN floods are still effective

against several widely-used operating systems1.

IP fragmentation attacks are another class of direct floods that exhaust memory resources. The

Internet protocol provides features for packet fragmentation which are used when transmitting

data from one medium to another. If, for instance, one were to send a 9000-byte data frame

from one network to a system located on another network with a maximum frame size of 1500

bytes, the packet (typically) would be fragmented into at least 6 separate IP packets. Endpoints

(and possibly routers in between) will need to reassemble the fragments prior to using any of

the upper-layer information contained in the packet.

There are many forms of fragmentation attacks, some of which are meant for denial of ser-

vice, and others for the evasion of security controls. An early form of this attack, named

teardrop [24], used overlapping packets to confuse victims’ IP implementations. Some of these

implementations would fail catastrophically, causing systems to crash. Today, teardrop and its

variants are not very effective in denial of service, as such implementation bugs have mostly

been eliminated.
1As of this writing, we could not find documentation indicating that Microsoft R© or Apple R© operating systems use

SYN cookies.
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More recently, the rose attack [35] was developed with the goal of memory and CPU resource

exhaustion. In its simplest form, two packet fragments are sent to a victim: one reporting

itself as the the first fragment from the set, the other claiming to be the last fragment. After

that, no more fragments are sent which claim to be a part of that original packet. By sending

large numbers of these fragment pairs, some IP fragment reassembly algorithms will allocate

large amounts of memory (e.g., all of the memory needed to accommodate fragments not yet

received) or CPU resources.

Against a well designed and implemented reassembly algorithm, such attacks should not be

a big issue because the majority of traffic on the Internet is no longer fragmented. Thus,

legitimate traffic can pass through relatively unhindered by the dropped fragments that would

result in such a DoS. However, some protocols such as DNS, may need to use fragments for

large result sets, and could be affected. Finally, security devices often have a lot of trouble

with fragmentation. Firewalls may need to reassemble fragments before validating proper

port numbers and network intrusion detection systems generally need to reassemble packets

prior to analysis, since attackers sometimes use fragmentation to hide their tracks [59].

2.2 Attack Classification

There is much discussion in the related literature on the topic of denial of service attack

classification [2, 28, 37, 49]. For the purposes of this paper, we focus on two aspects of DoS

attacks: the primary resource consumed, and the potential points of failure in the path of the

attack. In order to more easily break down the classification, we first introduce some general

attack classes:

direct: Attacks considered direct are those where a victim is flooded with single-packet spoofed

requests directly from the attacking systems. A simple ping or DNS request flood sent

from the attacking systems directly to the target are examples of this kind of attack.

direct stateful: This type of spoofed flood is a special subset of direct attacks. It preys on

protocols where the victim expects more packets later which relate to those previously

received. Because such protocols require victims to store information between packets,

it is sometimes possible to exhaust a victim’s memory resources. The classic example

is the SYN flood, where victims later expect an ACK to their SYN/ACK responses. IP

fragmentation attacks also fall into this category, as well as misconfigured DNS servers
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which allow recursive lookups. Any protocol that requires end points or routers/firewalls

to store state for each request could potentially be attacked in this way.

reflected: Reflected attacks are those where an attacker does not send packets directly to the

victim, but sends packets to third party systems (reflectors) which reply with packets

directed at the victim. This can serve to amplify the number or sizes of packets, or to

mask the original source of an attack.

reflected echo: Reflected echo attacks are a special case of reflected attack in which an at-

tacker has control over the content (or at least the amount) of data contained within the

response packets being generated by third parties. For instance, in smurf and fraggle

attacks, reply packets sent by reflectors contain the same data as sent by the attacker.

This is important, since attackers have full control over the amount of content being sent

and, therefore, the amount of amplification. DNS query/response reflection can have a

similar effect, if an attacker first goes through the trouble of finding DNS servers which

reply with large records.

The preceding definitions should encompass nearly every type of resource-consumption-based

denial of service attack currently known. The following table contains a breakdown on how

each group could be used to target different resources and systems:

TARGET END POINT FIREWALL ROUTERS
MEMORY direct stateful direct stateful

CPU direct
reflected

direct
reflected

direct
reflected

BANDWIDTH reflected echo reflected echo

Table 1: SPOOFED DOS ATTACK CLASSIFICATION

In the table above, “End Point” refers to the destination address of the floods; “Firewall” refers

to one or more packet filtering devices, which store state about connections for the purposes of

filtering; and “Routers” refers to all routers between the End Point and the attacker’s systems,

which do not store state about connections. It is generally assumed that End Points have

a much faster link between them and their gateway than the gateway does to the Internet.

Therefore it should not be considered a choke-point for communications to the outside world.

Also note that, while it is possible for direct and reflected attacks to consume all available

bandwidth on a link due to the sheer amount of data being moved, it is assumed that packet
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rate bottlenecks will arise (e.g., CPU limitations) on some router/firewall before this occurs.

(This is probably not a good assumption, but it does not significantly affect the final analysis.)

2.3 Current Defense Strategies

Ingress/Egress Filtering

Perhaps the most straight-forward strategy for mitigating spoofing attacks is to filter packets

at their source. If all ISPs and businesses dropped any outbound packets which advertised a

source address they do not own, many spoofing attacks would be made much more difficult.

In particular, massively distributed DoS attacks using virus-infected zombies would not be

as feasible. The IETF has made recommendations on how to do this [29]. Unfortunately,

many (perhaps most) Internet service providers have failed to do so. This lack of vigilance

can primarily be attributed to the fact that such filtering increases load on routers and would

require providers to buy additional equipment. In addition, it is likely difficult for ISPs to see

such filtering as an immediate benefit to their business, since they would still be susceptible to

spoofed attacks if other ISPs did not implement the same filtering.

Upstream Mitigation

As a victim of a DoS attack, often the only option to stop the attack is to have the upstream

ISP filter the attack temporarily. Because many attacks are easy to spot, based on the type of

packet or source addresses (in the case of reflected attacks), ISPs can generally stop most at-

tack traffic directed at a victim. Unfortunately this is typically a very manual, labor-intensive

task. Also, such filters can rarely be left in place after the attack has stopped, because some

valid traffic may be blocked by them.

Defending against direct stateful attacks poses a particularly difficult problem for networks

trying to filter the flood, because these attacks are often more difficult to distinguish from

normal requests. Generally, when buffers storing state for a given protocol (i.e., SYN buffers,

fragment buffers) are exhausted, the best strategy is to randomly drop entries instead of the

more commonly used LRU policy. This is because attackers who can flood a victim at a specific

rate can always push out any valid stateful requests before they are serviced when an LRU

strategy is employed. Unfortunately, even random drop policies do not provide much protection

against a powerful attacker. Some protocols (such as TCP) are conducive to the addition of

cryptographic cookies which can effectively mitigate state-based attacks, because defending
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systems can avoid storing any information about initial handshake packets. On the other

hand, for many protocols which are vulnerable to state-based attacks, protections like cookies

cannot be shoe-horned into the protocol after the fact. Additionally, while the use of cookies

can prevent state-based attacks, CPU resources can still be targeted.

Traceback

While mitigating DoS attacks may yield an immediate fix to the side-effect of this problem, it

does not address the core of it: the attacker who is attempting to disrupt communications and

deny access to the victim. If attackers were presented with a strong deterrent, a reasonably

high probability of being caught and prosecuted, then there would likely be many fewer such

attacks. One way of catching a perpetrator starts by tracing the attack back to the originating

attack system(s). The traceback problem has been discussed a great deal in the literature,

and a large number of solutions have been proposed [46, 62, 68, 70, 74]. Unfortunately, many

of these systems either require changes to the Internet protocol, are specific to upper-layer

protocols, or only provide partial traceback information. A good summary of several of these

techniques (as well as other defensive strategies) can be found in [2].

Client Puzzles

An approach for attack mitigation which is closely related to cryptographic cookies is the use

of client puzzles [7, 10, 26, 39]. The general technique is to instrument protocols with sim-

ple mathematical problems, which clients must solve before being given access to a system’s

resource. In such a protocol, clients who are behaving badly are given incrementally more dif-

ficult problems to solve for each request, which has the effect of significantly slowing attacks.

This approach is attractive, because it can be designed to require very low overhead on the

part of the server (so long as generation and verification operations are fast) and degrades

gracefully even in the face of occasional false positives. On the down side, client puzzles in-

variably require significant changes to existing protocols (if not new protocols all together) and

this approach is not any better suited to dealing with spoofed DoS attacks than cookies, since

attackers do not intend on carrying on the conversation to complete the puzzle anyway.

Overlay Networks

There have been many proposals to use overlay networks for the mitigation and traceback of

DoS attacks [41, 55, 70, 74, 85]. This approach to the problem is almost certainly to provide

convenient backward compatibility with old protocols while newer, safer ones are in use. Sev-
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eral appear to be effective solutions, but almost always require some critical mass of routers

to participate in the new protocol. Simpler mitigations to several specific DoS attacks have al-

ready been proposed and implemented in software, but convincing administrators of the need

to deploy them has held up the process. It is difficult to see how a more complicated solution,

like an overlay network protocol, could be deployed in the short term unless some other major

benefit accompanied the protocol.

3 Next Generation Internet and the New DoS Landscape

3.1 IPv6 Overview

IPv6, formerly called the IPng, is designed to be an incremental upgrade to the current Inter-

net protocol, IPv4. The chief motivating factor of moving to another protocol is the artificial

restriction on IPv4 address space. While network address translation technologies have staved

off an address shortage disaster temporarily, they often create difficulties with certain upper-

layer protocols and will not continue to operate efficiently forever. IPv6’s 128-bit address space

is much larger than IPv4’s meager 32-bit space, and it is difficult to envision a world in which

2128 addresses would not be sufficient for every humans’ computers.

In addition to the larger address space, IPv6 sports a simpler header for faster routing and

more easily integrated IPsec along with new features such as anycast addressing, interface

auto-configuration and flow labeling [33]. Many of these features exist in IPv4, but are noto-

riously difficult to use without configuring all systems on a network specifically to use them.

IPv6’s flexible header format allows many extensions to be used while also being more portable.

Besides having a much larger address space, many address-wasting conventions of IPv4 have

been done away with in IPv6. Network base addresses are not reserved for any special purpose

and by default, networks do not need to be configured with a broadcast address. The reserved

localhost addresses no longer eat an entire block of 224 addresses. NAT/NAPT are no longer

needed which means RFC1918-style private ranges are not either. Finally, with the ample

address space available, the organizations in charge of distributing address ranges will do so in

a uniform and well-planned manner designed to minimize the size of global routing tables [38].
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3.2 The Impact on Routing and Spoofing

With the advent of IPv6’s simpler address allocations/routing tables and the option of inte-

grated IPsec, there is a real opportunity to limit the impact of spoofing attacks. Simpler rout-

ing tables means it may be easier for network administrators to stop obvious spoofing attacks

coming from their networks. Additionally, if end-users deploy IPsec authentication headers,

packet source addresses could be validated. Unfortunately, it is unlikely that the public key

infrastructure will be set up any time soon to accommodate authentication of arbitrary clients.

As for egress/ingress filtering, there are limitations with it as well. Transition technologies,

such as 6to4 auto-tunnelling, will be used to migrate from IPv4 to IPv6 [14]. These mechanisms

will be in place for a significant period of time, at least until the majority of the Internet fully

supports the new Internet protocol. While they are still being used, attackers can easily spoof

packets without the fear of filtering so long as they can route IPv4 packets and their ISP does

not employ IPv4 ingress filtering [63]. Therefore, it seems switching to IPv6 will not create any

significant difficulties for attackers trying to conduct spoofed attacks in the near term. Other

mitigations to spoofed attacks will still be relevant and a necessity for many users.

3.3 Network Scanning a Massive Address Space

One interesting side effect of the deployment of IPv6 will be the potentially increased difficulty

of discovery scanning [15]. With each end-user network receiving many orders of magnitude

more addresses than the entire public Internet uses now, scanning for live hosts could become a

much more difficult task. Some have commented that this larger address space will make high-

speed network worms less commonplace, though the debate on that topic is far from reaching

a conclusion [11, 40]. In any case, it is likely that the DNS or other naming services will be

used much more frequently even within smaller networks, since addresses will be harder to

remember. Also, network inventory and auditing software will likely turn to passive traffic

analysis for the purpose of host discovery. These observations are what initially inspired the

work presented in this paper. Surely there must be a way that administrators can use this

large address space to defend their networks.
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4 Overview of Address Cookies

4.1 Inspiration and Approach

The use of random or cryptographic cookies has been around for some time, typically for the

purpose of tracking how information is used [69, 78]. In the domain of networking, several

protocols have been proposed in which cookies are used to defend against denial of service

attacks [1, 73]. More recently, systems have been developed which use email address cookies

to track spammers [79]. The original inspiration for IPv6 address cookies came directly from

the success of SYN cookies. SYN cookies are effective because they require clients to provide

the cryptographic cookie back at a later time in order to complete a TCP connection. The only

way a client could obtain the cookie would be to provide some source address belonging to that

client in the original SYN.

This is the same premise being used in address cookies. When clients request an IP address

for a domain, they are given a cryptographic cookie as the address. If they spoof this initial

request, they will be denied any further service since they will not have access to the cookie.

The main advantages over SYN cookies is that address cookies work at a lower layer (and thus

are not limited to TCP alone) and the size of an address cookie can be much larger, allowing

for more complex features and additional security. The disadvantage of using address cookies

with the DNS, is that the system requesting the record is not commonly the same as the one

requesting services later. Therefore, (relatively) strong authentication of clients between these

two protocols is not possible as it is between the SYN and the ACK of a TCP handshake.

4.2 Previous Work

Some related work on cryptographically generated IPv6 addresses appeared in [56] and [51],

in the area of mobile IPv6. Generalized schemes for this were later standardized in CGA [6],

which is used by SEND [5] to authenticate ICMPv6 neighbor discovery messages. In general,

these are methods for generating an IPv6 address through the hash of a public key, thereby

tying the key to the address of the system. This approach to authenticating addresses is a

great idea, and would be very useful in private networks, but it does not seem likely that a

universally trusted PKI will be in place anytime soon to eliminate spoofing attacks over the

Internet at large.
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TARP is another system, proposed by Gleitz and Bellovin, which proposes an interesting use

for the large IPv6 address space [32]. In this system, additional addresses are allocated dy-

namically by clients in order to alleviate the difficulties associated with allowing complex,

multi-port protocols through a stateful firewall. Such a system may be useful in conjunction

with address cookies to reduce the storage requirements on the firewall.

Work in the IPv4 space has also yielded similar systems. For instance, DAM [16] is an architec-

ture for DoS mitigation which is very similar to that proposed in this paper, but requires much

more storage and communication overhead between components. Sundaram and Milliken have

applied for a US patent [75] covering the use of randomized, resolver-specific responses to name

resolution queries for the purpose of tracking and blocking attackers. Unfortunately, due to the

limited IPv4 address space being used, attackers would be able to brute force the generated IP

addresses in relatively little time through direct or spoofed idle scans.

The system proposed in this paper obviously shares characteristics with many of these systems,

but none seem to have gone far enough down this path of research to fully apply the idea of

cryptographically generated IPv6 addresses to spoofed attack mitigation.

4.3 Protocol Goals

It is hypothesized that a system using address cookies can make the following four guarantees

about client requests:

1. Unpredictability

Clients cannot easily guess valid address cookies (destination addresses) even with

knowledge of several past valid cookies.

2. Expiration

Valid address cookies remain valid for new requests only as long as the DNS TTL

has not expired.

3. Record Association

A defending firewall can strongly2 associate an address cookie with the specific DNS

record requested earlier.
2Here, we mean that the firewall will be able to determine the precise DNS record the resolver requested to obtain

a cookie.
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4. Resolver Association

A defending firewall can weakly3 associate an address cookie with the DNS client’s

address.

4.4 Proposed Protocol and Architecture

The following protocol is designed to satisfy all of the above guarantee. Let us assume a de-

fending network hosts a firewall, a DNS server, a web server4, and (optionally) a logging server.

In addition, the defending network’s ISP manages an upstream router, which may also partic-

ipate in the protocol. While these systems may be organized in several different ways, let us

assume for now they are set up more or less as indicated in Figure 1.

In order to communicate with the web server, a client would need to follow these steps:

1. Client requests AAAA record from some third-party DNS recursive/caching server (DNS

cache);

2. The DNS cache sends a request for AAAA record to the defending authoritative DNS

server;

3. DNS server responds with a AAAA record containing an IPv6 address for the web server;

4. DNS cache responds to the client with AAAA record; and,

5. Client begins sending requests to the web server.

Of course a client could be playing the role of the cache server, but for generality, we assume

they are different systems. Figure 2 helps to illustrate this interaction.

In order to require the client to first query DNS for the AAAA record, the DNS server and web

server/firewall must agree on a randomization scheme for the addresses that will be considered

valid and the firewall must validate these addresses upon receiving a request. One could

simply have the DNS server pick a random address for each request, and communicate the

IP addresses returned to the firewall, which will then set up rules to allow packets to those
3Since the entire IPv6 address of a resolver can’t be fully embedded in an 80-bit cookie, some resolver-specific value

will be embedded in the cookies for DNS client. Multiple resolvers may be assigned the same identifier value, making
it a weak identifier.

4This system is applicable to any server which responds to requests from the public. The concrete example of a web
server merely helps set the context and makes discussion simpler.
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Figure 1: IPV6 ADDRESS COOKIES ARCHITECTURE

specific destinations. However, this would require a large amount of network overhead and

storage. Instead, we propose the use of cryptographic cookies to randomize and authenticate

these addresses. First, let us first define a few terms:

Address Prefix (AP):

The 48-bit address prefix for an 80-bit IPv6 range.

Address Cookie (AC):

A generated 80-bit value returned by the DNS server as part of an IPv6 address.

Key (K):

A secret key of at least 80 bits in length.
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Client DNS Resolver ISP Router Firewall DNS Server Web Server

example.net

AAAA? example.net

AAAA?

example.net is

2001:...example.net is

2001:...

GET / HTTP/1.1 ...

HTTP/1.1 200 ...

Figure 2: SAMPLE DNS QUERY AND HTTP REQUEST

Time increment (T):

Some fixed amount of time in seconds. (Probably in the range of 64 to 256).

Time-To-Live (TTL):

The configurable amount of time DNS records are set to live for. Must be a multiple of T.

expiration:

A 24-bit timestamp representing the expiration time of the associated DNS record. This

stamp is in the units of T, and is calculated by: expiration =
⌈

current time+TTL
T

⌉
Record ID (RID):

An 8-bit identifier indicating which DNS record was requested.

Source ID (SID):

The 24-bit result of a secret hash function applied to the requesting DNS cache’s IP ad-

dress (or at least a portion of it). The secret key for this function need only be known to

the defending DNS server.

checksum:

A 24-bit cryptographic checksum of the expiration, RID, and SID values for a given cookie.

In other words: checksum = hash(expiration | RID | SID)
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The AP, K, T, and TTL values are shared between the DNS server, firewall, and upstream

router. Note that, based on Figure 1, the DNS server may need to be accessible to the outside

world via a non-randomized address, lying outside of AP, so resolvers can find it via referrals.

Let the DNS server generate an 80-bit address cookie by:

AC = K{expiration | RID | SID | checksum}

Upon responding to a request with the address (AP | AC), the DNS server need not store any

information about the cookie in memory, nor does it need to communicate anything directly to

the defending firewall about each lookup.

The purpose of the checksum is to make it difficult to guess random ciphertexts that happen

to decrypt to valid cookies. This does not completely mitigate such an attack, but along with

other sanity checks, sufficient security is provided. See section 5.1.4 for a detailed discussion

of such attacks.

The purpose of the SID field is to assign an unpredictable identifier to requesting DNS caches.

This is designed to satisfy resolver association (guarantee #4), and its utility is discussed in

later sections.

The purpose of the RID field is to communicate to the firewall which DNS record the cookie

was returned with. This allows the firewall administrator to define an access control policy

based directly on the domain name that was requested. For instance, the DNS server, hosting

several sub-domains, could have a domain mapping configured like so:

www.example.org⇒ 0

mail.example.org⇒ 1

ftp.example.org⇒ 2

...

Up to 256 domains could be supported in this way. When a client subsequently connects to a

service on the web server, it will send packets to the encrypted address cookie generated by the

DNS server. The firewall, upon receiving these packets, will check a cookie using Algorithm 1.

Once a packet is allowed, it will be passed on to the web server, possibly with the destination

address rewritten.
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Algorithm 1 FIREWALL COOKIE VALIDATION

If packet is acceptable part of established connection:

ALLOW

Otherwise, decrypt the cookie and:

If (expiration > current time)

and (expiration < current time + TTL)
and (RID contains defined value)
and (firewall policy allows port/protocol for this RID)
and (checksum is valid):

Add connection to list of established connections
ALLOW

Otherwise:

DENY

The determination of allowable ports and protocols is done by looking up the value of the RID

field in a policy table stored on the firewall. Based on how domain names are mapped to the

integers above, and administrator might want to map those numbers to the policies such as:

0⇒ Allowed: 80/TCP (HTTP), 443/TCP (HTTP/SSL)

1⇒ Allowed: 25/TCP (SMTP), 993/TCP (IMAP/SSL), 995/TCP (POP3/SSL)

2⇒ Allowed: 21/TCP (FTP)

...

This allows for a very flexible firewall policy which ties domain names directly to a set of rules

while relying on a very small amount of information embedded in the cookie. This RID field

could also dictate how packets are rewritten when NAT is in use.

The role of the ISP’s upstream router is relatively simple. Its job (if it is participating) is pri-

marily to validate cookie expirations, in order to take some load off of the defending firewall.

See Algorithm 2 for the specific validation performed. While seemingly redundant, this vali-

dation is necessary to mitigate certain bandwidth and CPU exhaustion attacks. More on the

utility of the ISP’s router is described in later sections.

The logging server is an optional component and does not participate directly in the protocol.

Instead, its purpose is to receive information from both the DNS server and the firewall al-

lowing for offline analysis of attacks by administrators, as well as semi-realtime response to

prolonged attacks. More information on the advantages of having a logging server can be found

in section 5.2.
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Algorithm 2 ROUTER COOKIE VALIDATION

Decrypt cookie

If (expiration > current time) and (expiration < current time + TTL):

ALLOW

Otherwise:

DENY

The proposed system meets the guarantees described in section 4.3. An in-depth analysis of

how attacks against these guarantees are (or can be) thwarted can be found in section 5.1.

5 Analysis

5.1 Attacks Against Cookie Architecture

Here, we describe a list of possible attacks against each guarantee stated in section 4.3 for the

proposed system.

5.1.1 Attacks on Guarantee #1, Unpredictability

Offline Cracking of Cookies

The most straight-forward attack against any encrypted cookie, would be to brute force crack

the key. Once the key is discovered, new cookies could be generated offline, and used until the

key were changed. In order to crack a key, there must be some method of verification involved.

In this case, there is ample data in the plaintext of the cookie for an attacker to verify with

high probability that a guessed key is a good candidate. For instance, the decrypted cookie

must have a matching checksum, and the expiration must be reasonably close to the current

time. Once a strong candidate key were discovered (which passes these tests on multiple

cookies), one could generate new cookies with it and verify they work by sending requests to

the firewall.

Defending Against Offline Cookie Cracking

Obviously, the best defense against brute force attacks is to create a large equiprobable key

space. A very large key can be used with the encryption algorithms discussed in section 6.1.
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In particular, Blowfish [65] permits enormous keys (up to 448 bits) without a performance

penalty. Also, algorithms which use multiple rounds of block encryption, can use a different

key with each round and frequent key rotation would also help mitigate offline attacks such as

these, if necessary. These protections would easily thwart brute force offline cracking.

Online Guessing of Cookies

Online brute forcing of valid cookies may be possible if the set of all valid cookies with in the 80-

bit cookie space is large enough and guesses can be sent at a high enough rate. To accomplish

this, an attacker could merely generate random cookies and send them to the firewall. With

some small probability, the random plaintext that the firewall obtains after decrypting will

pass all necessary validation checks, and the request will be allowed.

An attacker will need some way to verify that a specific random cookie was valid. There are

two main ways of accomplishing this. The obvious one is to send the request with a source

IP address owned by the attacker. Once the request is answered, the attacker will know it

was a valid cookie. This carries the disadvantage of giving away the attacker’s address. How-

ever, there are other more covert ways of validating cookies. For instance, one could use an

idle scan (see section 2.1 and [3, 30]) for verification, much like they are typically used to

semi-anonymously scan for open ports. This specific attack is normally slower than send-

ing/receiving packets directly, but may be sped up by using many idle hosts.

Defending Against Online Guessing

When validating cookies, the firewall checks several fields in the decrypted cookie. Obviously,

the checksum is verified, but also, the RID field is checked as well as the expiration timestamp.

The checksum for random cookies will be valid once in every 224 attempts which, on its own, is

not considered sufficient to defend against this attack.

Fortunately, randomly generated expiration (resulting from the randomly generated cipher-

text) would not always be valid. It could have already expired, or the expiration could be set

far enough into the future as to be considered invalid. Here, we present a concrete example in

order to help explain the additional defense expiration timestamp checking provides against

this attack. If an administrator decided to use a TTL of 65536 seconds (around 18.2 hours),

and chose a value for T of 256 (or about 4 1
4minutes), then one could reject any cookies which

have already expired, or expire after the TTL. This means the valid window is 65536
256 = 256 = 28

in size. The remaining bits in the expiration timestamp must match, and thus provide an ad-
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ditional 16 bits worth of security against cookie guessing. Obviously choosing a larger T, or

a smaller TTL will increase the security of such a mechanism up to at most 24 bits worth of

security, but may negatively impact performance and granularity of TTLs.

An additional check is performed against the RID field in the proposed validation algorithm,

which will typically provide some small amount of additional security. However, for the sake

of argument, let us assume for now that our administrator is using all 256 record IDs, thus

eliminating the added security of this check.

With around 40 bits worth of protection against random cookies, it is very unlikely that an

attacker will find this kind of attack worth her while. If one were able to send 217 random

cookie packets per second to the firewall (which is well beyond the typical realistic rate limit

of 100 megabit Ethernet), then it would take on average, 48.5 days to obtain a valid cookie.

While not outside the realm of possibility, the gains of such an attack are limited since the

cookie would be useless after the embedded expiration timestamp. In addition, such a random

cookie would contain an unpredictable RID, preventing the attacker from choosing the services

she gains access to. Administrators who remain concerned with this level of security could limit

their use of RID values to 2, and set T equal to the TTL, yielding 55 bits worth of protection.

Against the same attack rate, it would take on average 4358 years to obtain a valid cookie

randomly.

5.1.2 Attacks on Guarantee #2, Expiration

Clock Roll-over and Cookie Reuse

There is an attack against Guarantee #2, which lies in the limited field width of the expiration

timestamp. Every (T · 224) seconds this timestamp will roll over, causing cookies generated

previously to be re-usable during their limited window. If T = 1 sec, this would occur about ev-

ery 194 days, which is not terribly worrisome, but it does break this guarantee in the strictest

sense. Larger values for T will provide additional protection, but will also reduce TTL granu-

larity.

Defending Against Clock Roll-over Reuse

An easy workaround to this problem is to be sure to rotate the symmetric key each time the

expiration field rolls over. This should be done periodically anyway, and doing so at least once
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every clock roll-over would not be difficult to implement. Since old cookies would not properly

decrypt with the new key, they would not be reusable.

5.1.3 Attacks on Guarantee #3, Record Association

So long as Guarantee #1 is satisfied, there does not seem to be any viable attack strategy for

messing with, or divulging RIDs as they are sent in the encrypted cookie to the firewall.

5.1.4 Attacks on Guarantee #4, Resolver Association

Offline SID Victimization

Since the SID field is based on a portion of the DNS resolver’s IPv6 address, an attacker has

some amount of control over it. One attack against this field is based on knowledge of the hash-

ing algorithm. If an attacker knew the specific hash algorithm being used by the defenders,

and the attacker owned a large enough address block, then it might be possible to generate

collisions with other DNS cache addresses in an offline attack.

For example, if an attacker knew he wanted to obtain the same SID as some other, non-

malicious DNS cache, he could repeatedly hash random addresses from his block until he found

a collision. Then, simply sending a request from that IP would get him a cookie with the same

SID as the other DNS cache. In this way, an attacker could effectively obtain the same level of

trust that any other cache has been assigned by the defenders.

Defending Against Offline SID Victimization

Defeating this kind of offline collision attack is not difficult. The defenders can use a secure

secret hash function or an HMAC to prevent the attacker from generating SIDs offline. Since

the SID values themselves are never exposed to an attacker, it should not even be possible for

an attacker to brute force the key to such a hash function.

Multiple Source SID Hoarding

Another attack against Guarantee #4 is to hoard cookies with many different SIDs. If a single

attacker could obtain many valid cookies each with a different SID, then another (perhaps a

DDoS, or other spoofed) attack could be launched using all of these, making it difficult to tie

all of those attacks to a single entity or to block in a reasonable amount of time.
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There are three basic ways an attacker could obtain cookies with a diverse set of SIDs. The eas-

iest would be to obtain a large block of IPv6 addresses, and then request a cookie from each of

these. Secondly, an attacker could locate many third-party DNS servers, which provide recur-

sive name resolution to the public, and request records through them. The final method would

be to use a large distributed botnet where each node requests one record from the defending

DNS cache, sharing this cookie with its owner or the rest of the botnet.

Defending Against Multiple Source SID Hoarding

The first strategy for defending against massive SID hoarding is to use the proposed address

assignment scheme for the IPv6 Internet to our advantage. RFC 3177 [38] describes how

addresses will be allocated to entities:

- Home network subscribers, connecting through on-demand or always-on connections should receive a /48.

- Small and large enterprises should receive a /48.

- Very large subscribers could receive a /47 or slightly shorter prefix, or multiple /48’s.

Therefore, it is a relatively safe assumption that a defending DNS server can hash just the

leading 48 bits of a requesting IPv6 address to generate SIDs. It would be very difficult for

an attacker to obtain allocations of many 48-bit prefixes, and eliminates this first method of

hoarding.

The use of third party DNS resolvers is a more difficult problem to solve. A recent survey of

public DNS servers indicates that as many as 75% provide recursive resolution to arbitrary

clients [54]. This means there will probably be no shortage of servers to use for the purpose

of hoarding cookies. The good news is, there are ever stronger incentives for administrators to

change this open resolution policy. For one, providing recursive resolution to arbitrary clients

makes DNS cache poisoning attacks much easier [72]. Additionally, there is evidence that

recent DDoS attacks have utilized recursive resolution with third party DNS servers to aid

in attack amplification [13, 80, 82]. Hopefully in the near future, DNS administrators will

become more aware of these problems, and fewer such servers will be available. In the near-

term, other strategies to mitigate a large number of SIDs will be necessary. Section 5.2.4

describes one approach for dealing with this problem through SID re-mapping.

The final method of SID hoarding, the use of a large number of compromised zombies, is also

difficult to solve directly. So long as such botnets exist, mitigation algorithms will need to

account for this. Fortunately, a good SID re-mapping algorithm should be able to deal with

this situation.
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5.1.5 Denial of Service Attacks

While this architecture is designed to help prevent some DoS attacks, it should not introduce

any memory or CPU requirements which could lead to new DoS vulnerabilities. Some specific

attacks and against the proposed system and some mitigations are described here.

DoS Attacks on DNS Server’s Cookie Generation

One kind of denial of service attack possible on the cookie system would be to attempt to

exhaust processing resources on the DNS server. While generating one cookie is technically

an O(1) operation with respect to CPU resources, it may require a large, constant amount

of computation. An attacker could, even from a single host, send a large number of DNS

queries, each of which requires two hashing operations and the encryption of the 80-bit block,

which could cause service degradation rather easily. An attacker could spoof such request

packets from random sources, effectively thwarting naïve caching schemes, thus remaining

untraceable.

Defending Against Cookie Generation DoS Attacks

One approach to mitigating this attack would be to cache certain cookie values, such as the

SID hashes to speed up computation. However, this probably would not work against a spoofed

DDoS attack, so it may not be worth the effort.

A second, more effective mitigation, would be to use a single referral cookie for every query.

The referral response would contain a name server address, which is a time-based cookie and is

the same for all requesters. Basically, this would be the same as the normal cookie, but it would

contain an RID which instructs the firewall to direct the traffic back to to the DNS server, and

the SID would be a constant (not based on the source address). This would allow the DNS

server to respond to all first-round queries very quickly and would require the resolvers to

obtain this first cookie before getting the AAAA record. Non-spoofing record requesters would

then be able to continue to request the AAAA record again, and the response to this second

query would contain a normal cookie. Spoofing requesters would not get the first referral cookie

back and would have a hard time forcing the DNS server to perform a full cookie generation

for each request. The only flaw in this system is that in a DDoS attack, a single resolver could

avoid spoofing its address, communicate the referral cookie to all other attacking systems,

and then all of them could use it to attack with spoofed addresses. Future work may resolve

this by using alternate referral cookie formats, which are resolver-specific but still easy to
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generate/cache.

A third, perhaps more effective, solution to this problem would be to have the upstream ISP

host a DNS server that generates such referrals. This adds yet another server to the mix that

needs to be configured with the cookie keys, but this would push many DoS attacks against

the DNS components upstream. For instance, if a DNS server located at the ISP handled all

cookie generation, or just cookie-based referrals to the real DNS server, then no public services

would need to be hosted on static addresses at the defender’s main network.

DoS Attacks on the Firewall’s Cookie Verification

Another, similar, denial of service attack is possible on the firewall side. Since the firewall

needs to perform almost as much computation to verify cookies, it may be possible to exhaust

processor resources by sending a large number of bogus cookies. This attack could also be

performed anonymously by spoofing source addresses.

Defending Against Cookie Verification DoS Attacks

In order to fully verify an address cookie, the firewall needs to perform a full decryption, a

checksum, an expiration check, and an RID check. An obvious way to optimize this for the

average case would be to verify the RID and expirations are valid before running the checksum.

In a worst-case scenario, suppose all 256 RIDs are used (which means no cookies can be blocked

based on that check) and all record TTLs are set to 7 days. The valid expiration window can be

set to 7 days, or about 219.21 seconds. Since our expiration stamps are in units of 256 seconds,

this is the same as 211.21 expiration clock cycles. With a 24-bit clock, the chance of a random

stamp falling within this window is about 2−12.79. In other words, about one in every 7101

random cookies will need to have their checksums verified. On the other hand, in perhaps a

more typical configuration where 16 RIDs are used with a TTL of 24 hours, the chance of a

random cookie needing to have its checksum verified is one in 794,121. For this reason, it does

not appear the checksum operation is the computation of concern in this scenario.

Instead, a defending firewall will be spending most of its time decrypting the random cook-

ies. Some minor speed improvements may be possible if a firewall can partially verify an

address cookie without completely decrypting the contents. However, this greatly depends on

the method of encryption. If the 3-round 64-bit encryption method were employed, and the

contents of a cookie were arranged just right, then 16 bits worth of data could be checked

(for instance, containing the high-order bits of the expiration stamp) after just two decryption
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rounds. This would yield a 33% speedup in the exclusion of the majority of random cookie

addresses. Of course, faster encryption methods would also speed this up, such as the reduced

round variants or an elastic cipher. (See section 6.1 for more details on encryption methods.)

Finally, using hardware implementations of 64-bit ciphers (DES implementations are com-

mon) would greatly alleviate this problem, as even cheap hardware solutions have produced

speedups on the order of 60 times for CBC modes [47].

Another approach may help, which involves the caching of valid cookies. If a firewall maintains

a cache of recently verified address cookies, it could quickly check this cache when new requests

come in. This would speed up validation for clients who have recently been authenticated, and

are still within their expirations. Then, if a firewall detects that it cannot keep up with the

load of incoming cookies, it could randomly drop some portion of the new, non-cached cookies

that need to be decrypted. This mode of failure is better than dropping a random selection of

any incoming packet and would allow established connections and recently validated clients

to continue interacting with the defending network. New valid clients would initially have no

priority over the attackers and may have difficulty getting validated initially. Luckily, once

a single cookie of theirs gets verified and cached, they would then be fast-tracked in later

verifications, which would ultimately benefit them.

DoS Through Memory Exhaustion

One of the most effective resource exhaustion techniques is memory exhaustion. This is the

reason SYN cookies were developed, and such attacks should be taken into account with any

new security system. Fortunately the IPv6 address cookie scheme, as presented, is immune

to such attacks since neither the DNS server nor the defending firewall need to store any in-

formation about cookies they generate and verify. While caching mechanisms will improve

performance and help defend against other kinds of DoS attacks, these can easily be imple-

mented with a fixed memory.

5.1.6 Summary of Attacks Against IPv6 Address Cookies

In summary, the most worrisome attack against the core architecture and protocol are the

different forms of SID hoarding, as mentioned in section 5.1.4. If not properly mitigated, these

attacks may render several of the applications of address cookies ineffective. Also of note are

the many possible DoS attacks against the address cookie architecture. While it is possible to
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mitigate them, a solidly implemented and tested software is essential, as it is with any security

software.

5.2 Applications of Proposed Architecture

Provided that the guarantees specified previously hold up, we may base more advanced miti-

gation algorithms on them. The following strategies are designed to use these guarantees to

defend against typical spoofed attacks (not attacks specific to this system).

5.2.1 Hidden Services

The most basic feature that IPv6 address cookies provide, given the proposed design, is a form

of authentication reminiscent of port knocking techniques [44]. Port knocking, is a method of

changing network access rules via a covert channel. It has many variants, but in its basic form

it consists of a client and firewall which agree on a certain sequence of unused ports. When a

client sends requests to the firewall with the correct sequence of destination ports, the firewall

opens up access to a service for that client. The firewall never responds to the requests in any

special way, other than opening up the predefined service. The purpose of this covert communi-

cation is to hide the availability of potentially vulnerable services. For instance, if only systems

administrators are allowed to use SSH to a given server, then using port-knocking to hide it

will protect it from online password brute-forcing attempts and zero-day exploits. This tech-

nique is generally only for services that are not offered to the general public. Recently, there

have been many variants of port knocking proposed and developed. More modern versions

even employ one-time password schemes to prevent passive replay attacks [84].

It should noted that, in general, port knocking systems are not intended to provide strong

security. They merely serve as clever way to hide a service from scripted attacks. A dedicated

attacker with the ability to sniff packets of a user connecting to a protected service would be

able to overcome the majority of port knocking schemes.

With IPv6 address cookies, we can hide services in a transparent way. For instance, if an

administrator wished to hide a specific service, only to be accessed over the Internet by em-

ployees, then he could distribute a secret domain name to his coworkers, perhaps of the form:

SECRET.example.com. Of course, SECRET would be some strong password. He could configure

his DNS server to map this domain to an RID used only by that domain. Then on the firewall,
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a port filter policy could be set where only that RID is allowed to connect to the hidden service.

So long as the DNS server is configured not to leak that domain name, then there would be no

way for attackers to obtain a cookie with that RID, and no way to connect to that service. It

would also be possible for the administrator to map multiple secret domain names to the same

RID, and give each of his coworkers a different secret. A practically infinite number of these

mappings can exist in the DNS server without the need to use up any more RIDs. This would

allow some secrets to be expired when certain employees no longer require access.

The main advantage of this approach over most port knocking systems, is that it is completely

transparent to the client. No special port-scanning software is needed in order to perform the

knock. All that is required is knowledge of a specific domain name. As it stands, replay attacks

against this system are certainly a problem, but such secret domain names could be augmented

with one-time passwords just as other systems have been.

5.2.2 Static Flood Mitigation Based on SID History

Since the SID field of an address cookie provides a defender with some information (though

certainly imperfect) about the original source of requests, this can be used to mitigate spoofed

denial of service attacks. While many SID values will be used by both attackers and valid

clients, it is highly unlikely that the distribution of attacks will match the distribution of valid

clients. In other words, if we were to calculate the ratio of attack rate to valid request rate for

every SID, it is unlikely that this ratio would be the same across all SIDs. Thus, a defender

can mitigate some portion of attacks by choosing certain SIDs to block, which have a history

of mostly malicious requests. For instance, if an attacker is sending a huge number of spoofed

SYN packets through cookies with a single SID, it may make sense to block that SID even

though some valid clients will be blocked as well. If the majority of clients (outside of that SID

group) would benefit from this blockage, then perhaps the resulting number of valid requests

serviced would be higher than with doing nothing at all. The difficult part is to quickly deter-

mine what the optimum block strategy would be, given an arbitrary distribution of attacks and

valid requests. Here, we describe such a strategy which is optimal given some assumptions.

The assumptions made by the following algorithm are as follows:

1. For a specific type of request, the maximum servicing rate is known and is constant.

Above such a threshold, requests of this type will be dropped randomly due to limited
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resources. We refer to this maximum rate as M.

2. The rate of requests can be measured for each SID. In addition, when malicious requests

are received, they can be identified as attacks some short time later through a reliable

heuristic.

3. An attack against the defender’s network is currently in progress, and will be for the

foreseeable future. This attack causes the total rate of requests to be greater than M.

During the attack, the distribution of malicious requests across all SIDs will not change

significantly, nor will the distribution of valid requests. Thus, the attack is static in

nature.

4. The defending administrator gives no preference or priority to any valid requesters. Her

goal is merely to maximize the number of valid requests getting serviced, regardless of

who they are coming from.

Now, for the sake of generality, let us assume that the defender will assign a probability to each

SID. For every request received, it will be accepted with the probability assigned to its SID. Let

N represent the number of possible SIDs and ~P be the vector of N probabilities maintained by

the defender for this purpose. In order to maximize the rate of valid requests serviced, we first

must be able to compute this rate based on the parameters we have so far defined. Let S(~P ) be

the rate of valid requests serviced, where pi represents the probability associated with the i-th

SID, and 1 ≤ i ≤ N . Also, let us define the vi and ai as the rate of valid requests and malicious

(attack) requests, respectively, being sent via the i-th SID. S(~P ) can be simply computed by:

S(~P ) = F (~P ) ·R(~P )

where F (~P ) is the rate of valid requests, regardless of SID, which make it past the probabil-

ity filter. R(~P ) is the probability that any given request will be successfully serviced once it

reaches the server. (Recall assumption #1 states that if the number of requests reaching the

server is greater than M, then some will be dropped randomly.)

Obviously,

F (~P ) =
n∑

i=1

vi · pi
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and

R(~P ) =
M∑n

i=1(ai + vi) · pi

Therefore the expanded form of S(~P ) is:

S(~P ) = [
n∑

i=1

vi · pi] ·
M∑n

i=1(ai + vi) · pi

Once again, as a defender, we would like to know what values to select for each pi in order to

maximize S(~P ). To find these, we can take N partial derivatives with respect to the pi’s. The

form of these derivatives, for some pj (where 1 ≤ j ≤ N ) is:

∂S(~P )
∂pj

=
M · (vj · [

∑n
i=1(ai + vi) · pi]− [aj + vj ][

∑n
i=1 vi · pi])

[
∑n

i=1(ai + vi) · pi]2

∂S(~P )
∂pj

=
M · ([vj ·

∑n
i=1 ai · pi] + [vj ·

∑n
i=1 vi · pi]− [aj ·

∑n
i=1 vi · pi]− [vj ·

∑n
i=1 vi · pi])

[
∑n

i=1(ai + vi) · pi]2

∂S(~P )
∂pj

=
M ·

∑n
i=1(vj · ai − vi · aj) · pi

[
∑n

i=1(ai + vi) · pi]2

Notice, in the numerator’s summation, that for the case where i = j, the term will go to 0.

Therefore, we can rewrite this as:

∂S(~P )
∂pj

= M · [
n∑

i=1,i 6=j

(vj · ai − vi · aj) · pi] · [
n∑

i=1

(ai + vi) · pi]−2

Hence, the partial derivative depends upon pj only in the denominator, and therefore the func-

tion will be positive or negative, for all values of pj in that range, depending solely on the

summation in the numerator.

If, for a specific j:
n∑

i=1,i 6=j

(vj · ai − vi · aj) · pi < 0

then
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∂S(~P )
∂pj

< 0

This is helpful, because we know that if a partial derivative with respect to pj is always nega-

tive, then S(~P ) will be monotonically decreasing with respect to pj . If an administrator needed

to select only one pj (e.g., ~P had only one element), then the choice would be obvious.

If:

∂S(~P )
∂pj

< 0

then set pj = 0, otherwise set pj = 1. Unfortunately, many probabilities must be selected,

and each selection affects the numerators of the other partial derivatives. However, what

if we found that for some particular j, every element in the numerator summation of ∂S(~P )
∂pj

were negative or zero? This would imply that no matter what values we select for its pi’s, the

resulting slope would be negative. Therefore, we could set this pj to 0 with confidence that

later selections of pi’s would not affect the sign of ∂S(~P )
∂pj

. In addition, we can prove that one

such j always exists.

It is obvious that:

∃j s.t. ∀i :
vj

aj
≤ vi

ai

Meaning, out of all vi

ai
ratios, there exists one which is smaller than or equal to all the rest.

From this we conclude:

∃j s.t. ∀i : (vj · ai − vi · aj) ≤ 0

which means if we just select the j with the smallest vj

aj
ratio, we can always set pj = 0.

By induction, it is easy to see that once our first pj is set to 0, it drops out of all the other

partial derivatives, and we will have a new j which now has the smallest ratio. One would use

Algorithm 3 to select an optimal ~P .
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Algorithm 3 STATIC SID BLOCK POLICY GENERATION

Let P be an array of length N

Let T ←
Pn

i=1(ai + vi)

Sort list of SIDs by vi
ai

ratio, ascending

For i← 1 to N :

P [i]← 1.0

For j ← 1 to N :

If T ≤M :

QUIT

Else if (T −M) < (vj + aj) :

P [j]← 1− T−M
vj+aj

Else:

P [j]← 0

T ← T − (1− P [j]) · (vj + aj)

In essence, this algorithm selects the SID with the most malicious ratio of attacks, and blocks

it first. If after blocking it, the resulting number of requests is still greater than M , it continues

onto the next one. Once it reaches the SID whose blocking will result in T < M , it will block

the minimum amount of that SID in order to make T = M .

This method of blocking could be very effective against attacks directed at the web server, but

it is basically pointless if an attack is merely meant to overload the CPU of the firewall, or to

choke up the bandwidth of links to the firewall. This is why the upstream ISP router compo-

nent is important. This router would need to at least validate cookies to slow random cookie

attacks, but it also would need to honor an SID filtering policy, based on the algorithm just

described, in order to be effective. Fortunately, even with this addition, the blocking algorithm

for the upstream would remain stateless and simple. If the TTL is valid, and the SID policy

does not block it (probabilistically), then it would be allowed. The SID block policy on the up-

stream router would likely be updated by the firewall through some out-of-band messages sent

whenever the firewall updates its own policy.

5.2.3 Dynamic Flood Mitigation Based on SID History

While the algorithm that resulted from the analysis above is certainly nice and simple, a big

assumption was made. Real life is never static, and the Internet is even less so. How one
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detects and measures attack rates and request rates from valid users is very important for

the overall success of such an algorithm. At the very least, the problem of tracking attacking

SIDs after they have been blocked needs to be addressed. For instance, when a block policy is

generated and put in place, how does one determine when an attacker has ceased the attack? If

100% of requests from a specific SID are blocked, then there would be no way to determine the

ratio of valid requests to attacks. For this reason, it is important to allow a certain percentage

of attacking SIDs through even though this will slightly degrade the performance in the static

attack scenario. One possible algorithm for a more dynamic block strategy can be found in

Algorithm 4.

Algorithm 4 DYNAMIC SID BLOCK POLICY GENERATION

Let Pnew be an array of length N

Let P be an array of length N

Let Mtest be a small constant based on M (on the order of M
10000

)

Let T ←
Pn

i=1(ai + vi)

Sort list of SIDs by vi
ai

ratio, ascending

For i← 1 to N :

Pnew[i]← 1.0

For j ← 1 to N :

R← (
vj+aj

P [j]
)

If T ≤M :

QUIT

Else if (T −M) < R :

Pnew[j]← 1− T−M
R

Else:

Pnew[j]← Mtest
R

T ← T − (1− P [j]) ·R

P ← Pnew

This adjustment is much better, as it calculates the overall rate of an attack based on the col-

lected data and the current block rate (stored in P ). In addition, it allows a small portion of the

attack to come through for each SID so that changes in the attack rate and other request rates

can be monitored. Obviously, the algorithm would be slightly more complex if an upstream

router were configured with a block policy as well, but the same basic technique could be used.

Since this algorithm sorts SIDs only by their ratio of valid requests to attacks, blocking the

majority of requests from a few SIDs does not affect the result of future policy calculations.
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The only tricky part here is picking a good Mtest. It is suggested that something on the order

of M
10000 be used, but this is mostly arbitrary. The risk with using any specific constant in the

denominator could cause the system to be overwhelmed if an attacker could send a flood using

that many SIDs at a rate of Mtest. A better method of the selection for Mtest has been left to

future research.

Even with this improved algorithm, there are several questions remaining. How would one

track changing attack and valid request rates over time? How often should one update the

block policy? These questions remain open. It seems that the tracking of request rates would

be best accomplished with commonly used exponential weighting formulas. However, it seems

that no matter what time-weighted formula one uses, there will always be some form of mod-

ulation attack that could at least partially defeat the defense. Imagine a clever attacker who

first attacks under a single SID. Just when the firewall begins to learn the correct ratio of valid

requests to attacks on that one SID, the attacker switches to a new SID. Repeat ad nauseum.

Over time, the average failure rate for valid clients would certainly be higher than with a static

attack, because of the time it takes to learn the new attack rate. This modulation attack is so

far the most significant threat to the system. One possible defense is proposed the next section.

5.2.4 Semi-realtime SID Remapping

One problem with SID-based filtering is the fact that it is possible to have an entirely innocent

DNS resolver be blacklisted due to SID hash collisions. Figure 3 illustrates a possible scenario

in the mapping of clients to resolvers and resolvers to SID hash values. Attacking clients and

the resolvers they are using are black. Non-malicious clients are white, as are resolvers which

do not have any attackers using them. Finally, SIDs which map to one or more attacking

resolvers are grey.

While it does not seem possible to decipher the true attacker’s identities through IPv6 address

cookie alone, it should be possible to determine exactly which DNS resolvers are being used.

By using simple SID remapping, it is possible to weed out the resolvers which are being used

for attacks from those who just happen to hold the same SID value.

A simple way to accomplish this would be to use the logging server located in the defender’s

network to make the remapping decisions. This system would receive logs from both the DNS

server and the firewall. The DNS server would provide information on the association between
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DNS Resolvers

Figure 3: SID MAPPING SCENARIOS
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SIDs and resolver IP addresses. The firewall would provide the list of all SIDs recently seen,

and their attack and valid request rates. With this information, the offline log processor would

be able to determine where SID collisions exist. In order to weed these out, the log processor

could send commands to the DNS server to make special exceptions for certain DNS resolvers.

The next time the resolver asks for a cookie, the SID returned would be based on some static

value in a lookup table, instead of being based on the source address.

For instance, in Figure 3, the second SID is associated with one resolver which is being used

for attacks, and another resolver that is not. The offline log processor wouldn’t know which is

the attacker (or if both are), but could perform an experiment to find out. By asking the DNS

server to re-map one of these resolvers’ IPs to some SID that has no attackers behind it, it

could be determined which of the two resolvers are being used for attacks, based on later log

results. This of course could be generalized for a large number of resolvers being associated

with one SID. Over enough time, the SIDs could be re-mapped sufficiently such that no benign

resolvers would fall in the same SID with a malicious resolver.

Once the set of all malicious resolvers is found, the offline log processing agent could begin

mapping malicious resolvers into the same SID for more efficient filtering at the firewall and

upstream ISP. This is actually a very important mitigation against SID modulation attacks

that are not easily addressed with dynamic SID filtering alone. For example, if the log process-

ing agent identified a modulation attack over a long period of time, the DNS resolvers being

used in the attack could simply be mapped to a single SID, eliminating the problem for the

firewall. This kind of blacklist remapping must be used with caution, however. Each remap-

ping causes the firewall to have to relearn its distribution of attacks some small amount, and

mapping too many resolvers with a single SID degrades the firewall’s ability to differentiate

between requests if attacks change in scope. More analysis of the costs and benefits is certainly

needed before a safe and efficient algorithm for remapping can be developed.

5.2.5 Slowing Attacks Through Repeated Referrals

Another simple defense strategy lies in the use of a reactive DNS server. Since clients are

now required to use the DNS in order to use any other services, one can apply several delay

tactics to slow attacks. For instance, if it is decided through specific heuristics that a certain

DNS resolver is “evil” through association with the clients using it, or by other means, then

the DNS server could intentionally delay responses to it for some period of time, marginally
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slowing any attacks that use cookie addresses. A more effective strategy against such DNS

resolvers, would be to return repeated referrals to other cookie addresses. By creating a chain

of referrals to other cookie addresses (which are ultimately mapped back to the same DNS

server), a DNS server can delay queries even further. While this may not seem like a strong

mitigation, it could slow an attack by a substantial percentage in the instance of DDoS attack

where all clients are requesting records separately and TTLs are low. An even more extreme

mitigation strategy would be to respond to the most malicious of DNS resolvers with bogus

addresses (e.g., the loopback address). This is risky, since all clients who use that resolver

would be impacted. However, with a small enough TTL this may be an acceptable risk.

Obviously, these strategies have the potential of opening the DNS server itself up to DoS at-

tacks, and any such algorithms should be mindful of the current load on the DNS server. Fortu-

nately, it is trivial to distribute the DNS request load across many servers, so in large networks

this should not be an major issue. An additional limitation of this approach is that it will not

mitigate attackers who simply flood a network with packets to invalid cookie addresses. There-

fore, these mitigations are useless against many attacks unless upstream filtering is used at

the ISP to validate cookies.

5.2.6 Offline Traceback

The last benefit of IPv6 address cookies we have identified is related to the traceback problem.

If one were to use SID remapping to find the list of DNS resolvers used by an attacker, tracing

the attack back to one or more of the attacking systems would be much easier, assuming a large

portion of these resolvers are not compromised themselves. Defending administrators could

contact the administrators of the resolvers, and ask them for logs or even ask them to disable

anonymous recursive resolution, if that were enabled. While this does not completely solve the

traceback problem, it does almost as well as many proposed algorithms without requiring any

modification to core routing protocols. This could be very helpful, for instance, against smaller

DoS attacks and other spoofed scans where a forensic investigation were being conducted.
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6 Design and Implementation

6.1 Cryptographic Considerations

While the cookie format proposed above is encrypted, its purpose is not to provide secrecy for

the plaintext. Secrecy may play some role in protecting cookies against certain attacks, but the

real purpose of encryption is to provide enhanced integrity. In order to authenticate cookies

later, and be reasonably sure an attacker cannot manipulate a cookie offline, some amount of

redundancy is needed. This is primarily provided by the checksum, but it is unfortunately

short due to the restrictions on cookie length. To prevent attackers from manipulating the

checksum and/or the other data fields independently, we need to introduce some unpredictable

diffusion into the cookie. This is most easily accomplished through a block cipher which en-

crypts the entire 80-bit cookie as a single block. Unfortunately, there are not any readily avail-

able 80-bit block ciphers in the public domain, and this presents an engineering challenge.

6.1.1 OFB and CFB Modes

The first option considered as a solution for this problem are the OFB and CFB cipher modes.

One can quickly rule out OFB mode, since it does not provide any diffusion of the plaintext.

There are however, problems with using CFB mode as well. First is the issue of an initialization

vector (IV). Normally one needs to use a new randomized IV for every plaintext encrypted, but

in this situation, we do not have any bits to spare for transmitting an IV in the cookie. Instead,

we could choose secret rotating IVs, but this is difficult given the unpredictable way in which

cookies will be used after they are issued, and may leave them open to attack. Even without

this hurdle, there are limitations to the amount of diffusion CFB mode can provide. As a

cipher in CFB mode progresses through the ciphertext, it diffuses the information from the

plaintext into subsequent encryptions. Therefore diffusion is provided only in one direction:

later encryptions are affected by plaintext of earlier encryptions, but earlier ciphertext would

not be affected by modifications to later ciphertext blocks. This limitation would require us

to do multiple passes in CFB mode (perhaps forward and backward), in order to achieve full

diffusion. While possible, it does not seem like the easiest or best performing solution, so other

approaches were considered instead.
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6.1.2 Elastic Ciphers

A survey of papers on variable length block ciphers turned up some interesting related re-

search. Ritter proposed a framework for a variable length block cipher which purportedly

achieves good diffusion [61]. However, the literature does not specify a concrete implementa-

tion, and the apparent lack of peer review (even though the work was published in 1998 or

earlier) does not bode well for the security of the approach.

More recent work by Cook, et. al. [17, 18, 19, 20, 21, 22] proposes a scheme where existing

block ciphers are modified to stretch the block length by an arbitrary number of bits up to

double the width of the original cipher. In these elastic ciphers, additional rounds are added

in propoportion to the amount the block is stretched, giving them nice speed properties. This

approach also makes proving aspects of security a bit easier, since the strength of the original

cipher can be assumed, and proofs can be based on that security. Elastic ciphers are very new,

however, and thus a lack of peer review remains an issue. Nevertheless, a proposed application

of elastic cipher techniques to Blowfish [65] is included in Appendix A. Its security is in no way

guaranteed as it is merely included to demonstrate how a fast (and patent-free) 64-bit block

cipher could be stretched to 80 bits for the purposes of cookie encryption.

6.1.3 Triple Block Encryption

A simpler approach to the problem of encrypting an 80-bit block, involves multiple encryptions

of the plaintext. Supposing we use a 64-bit block cipher, we could achieve almost complete

diffusion of an 80-bit block by encrypting the first 64 bits in place, followed by the last 64 bits

(which of course would include the last 48 bits of the output of the first encryption), and finally

a third encryption of the first 64 bits would be repeated (which includes the first 48 bits of the

second encryption). The diagram in Figure 4 helps to illustrate this process.

At first blush, one might wonder why three encryptions are necessary, instead of just two.

The reason for this, is if only two encryptions are done, then the last 16 bits of the plaintext

would not influence the value of the first 16 bits of the ciphertext. This could (depending on

the contents of the plaintext) open up the encrypted block to attack through the modification

of the last 64 bits. So, the third encryption remixes the output of the second block (which is

influenced by the last 16 bits of plaintext) with the first 16 bits of ciphertext. Arguably, the

diffusion achieved in this scheme is not completely symmetric as some input bits may influence

41



Input Byte:

1 2 3 4 5 6 7 8 9 10

Encryption 1

Encryption 3

Encryption 2

Figure 4: TRIPLE BLOCK ENCRYPTION

some final output bits more than others. However, given the amount of remixing on the second

and third encryptions, it doesn’t seem like an easily exploitable flaw. Those concerned with

this may be able to increase the rounds of encryption (perhaps up to five in total) in order to

achieve more uniform diffusion.

This method of encryption is certainly easier to implement than either the CFB or elastic

approaches. While 64-bit block ciphers are no longer popular among cryptographers, several

remain resilient to publicly known attacks. However, three encryptions is a bit slower than

what could be achieved through an elastic cipher by as much as a factor of 2.

6.1.4 Double Block Encryption

While it is necessary to use at least three encryptions to achieve full diffusion on arbitrary

80-bit plaintexts, one can get by with less given the proposed cookie format. Recall that the

last 24 bits of the cookie is a cryptographic hash of the first three fields. If one were to change

values in any of these first fields, chances are that the checksum would also need to change.

The checksum is, by definition, redundant information and it can be relied on for diffuse into

the encryption blocks.
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For instance, if one were to modify the previous encryption scheme by removing “Encryption 3”

from Figure 4, then it would be possible for an attacker to modify the first two bytes of a cookie

without it affecting the last two bytes of the resulting plaintext. (This would result in the first

8 bytes of the decrypted plaintext being essentially random.) Since the last two bytes are a

checksum of the earlier bytes, the cookie would be invalid with a high probability. Taking into

account the resulting timestamp would also be random; the chance of such a modified cookie

being valid no more likely than in the three encryption case.

6.1.5 Single Block Encryption

By analyzing attacks against the specific cookie format even further, it becomes apparent that

one could get away with just a single 64-bit encryption. If we were to remove both “Encryption

2” and “Encryption 3” from Figure 4, we would leave 16 bits of the checksum unencrypted. If

we then change the 24-bit checksum into an HMAC, it would not leak any information about

the data being authenticated, and the cookie would remain difficult to brute force.

For certain filtering schemes, there are attacks available that may be exploited with this en-

cryption scheme if verification is not carefully implemented. Recall the random cookie flooding

attack described in section 5.1.5, where an attacker sends large numbers of spoofed requests

to random destination addresses. If a single round of encryption is used, an attacker could

bypass the basic checks performed by the ISP router on the TTL of a cookie, if a valid cookie

were modified randomly. Specifically, an attacker could first obtain a single valid cookie, and

then systematically alter the last two bytes (containing 16 bits of the HMAC) and send these

cookies in a spoofed attack. Because the information stored in the first 64 bits would still be

valid, the TTL check performed by the ISP router would be bypassed. Then, when cookies

reach the firewall, it would first check the TTL and the RID, which would both be valid, and

then be forced to check the HMAC, which is a more expensive operation. In order to defend

against this attack with this cookie format, one would need to employ the SID filtering mech-

anisms described in section 5.2.2 on the upstream router. Because the attacker would not be

able to manipulate SID values in this attack, certain SIDs could be blacklisted at the router

and the attack would be properly stopped.
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6.2 Software Implementation

6.2.1 Platform Selection

For the purposes of developing a proof of concept system, it was important to find software

packages which were easy to augment. Oak DNS server [27] (version 1.2) was selected because

it is written in a high-level scripting language (Python) which reduced development time sig-

nificantly. As for firewall software, we settled on using Click Modular [42] as a platform to build

two modules: a stateful, address translating firewall, and a stateless cookie-validating router.

While Click Modular is written mostly in C++, we found it very easy to extend with minimal

impact on surrounding code, and flexible as a testing platform. In addition, Click Modular is

surprisingly fast, considering the amount of flexibility it imparts on users and programmers.

The additions to Oak were very simple. A new configuration syntax was added to the config-

uration file format, and an external configuration file is parsed which stores the secret keys

used in cookie generation. No DNS DoS mitigation code was added to Oak, as it did not seem

useful to test such attacks against such a slow language. In the end, less than 200 lines of code

were added to Oak.

Far more work was put into the Click modules (called elements) which handle cookie valida-

tion and some more advanced filtering techniques, such as SID real-time blocking. Another,

smaller, Click element was created to play the role of the filtering ISP router. This simple

element merely decrypts cookies and validates their expiration fields before passing them on.

Overall, the Click code totals around 1700 lines of C and C++ source. While not a trivial ad-

dition of code, this demonstrates how an IPv6 address cookies implementation would not be a

huge undertaking, or be a major risk to perimeter security due to code complexity.

6.2.2 Features Implemented

In the prototype implementation, address cookies were encrypted using the two-round block

encryption method (see section 6.1.4) and the checksum and SID were generated using SHA-

1. Much faster secure hashing algorithms exist which would work well for this application,

but this additional overhead had a negligible impact on the specific experiments being run. A

known-good cookie cache is maintained by the firewall module, which is designed to help miti-

gate bad cookie floods. However, testing against this type of attack has not yet been conducted.

44



The main mitigation algorithm implemented in the firewall was dynamic SID filtering, as

described in section 5.2. In order to make address cookies transparent to servers, the firewall

module translates destination addresses of incoming connections after cookie validation. It

stores state for each connection in a primitive way, in order to speed up translation and to

provide a simple heuristic for tracking TCP SYN floods. The firewall module tracks rates for

the various types of connection attempts and dynamically responds to SYN floods by partially

blocking the most “evil” of SIDs. No mitigation algorithms were implemented in the DNS

server, as the proposed techniques were developed later in the research process.

6.2.3 Engineering Challenges

During the course of development, a number of implementation challenges arose. Foremost,

the method of tracking request rates over time needed to be solved. Also, a heuristic for the

detection of a specific attack was needed in order to perform proper SID filtering. In order to

track packet rates over time, a standard exponential moving average formula was used:

Mn = α ·Mn−1 + (1− α) ·mn

where n is the index of the current packet, Mn is the newly calculated average, and mn is the

data of interest for this packet.

Using this averaging formula, the current global request rate is tracked, in addition to request

rates for each SID. Rates are calculated by keeping a running average of differences between

arrival times of packets. Simply taking the inverse of this average delta provides one with a

rate. Tracking the packet arrival delta, rather than the instantaneous rates directly, is much

easier to do when system clocks are not very granular. Over time, the average request rate

tracks accurately and responsively through the exponential moving average formula. This

technique is very similar to the one used by TCP implementations to track average round-trip

time. Other variants of moving averages were tried, but experimentation proved this method

to be the most accurate for basic tests. Different approaches are almost certainly possible,

however.

The second major engineering challenge that had to be overcome was the detection of malicious

requests. Since the goal of this research is to develop strategies for reacting to attacks, and not
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to develop heuristics for attack detection, a simplistic approach was used for the detection of

SYN floods. Because the firewall already tracks the state of connection, it was not difficult to

add attack detection based on this. For each SID, three rates were recorded: blocked request

rate, allowed request rate, and valid request rate. When a handshake completes successfully, it

is added as a valid request. Valid requests are a subset of all allowed requests, and the allowed

attack rate can be extrapolated from those. While the algorithm described in section 5.2.3 does

not require one to track the blocked request rate, we found it more stable to do this, rather than

trying to extrapolate this rate from the small amount of traffic making it past high-percentage

SID filters.

7 Experimental Results

7.1 Test Environment

In order to test the software implementation in a realistic environment, a number of systems

had to be built. To make this task easier, a VMWare R© ESX server system was used to create

a set of virtual machines which were used for testing. Figure 5 contains a diagram of the

network configuration.

Each of the eight virtual machines were running Debian GNU/Linux with a custom-configured

46



kernel, version 2.6.15. The circles shown in the diagram represent virtual switches. The

hardware running all of these virtual machines was a quad-CPU Intel R© XeonTM (3.16GHz

with HyperThreading) server with 16GB of main memory. All systems were configured to

handle normal IPv6 traffic, but the router and firewall were not set up to route IPv6, since

Click Modular handled that.

The purpose of the attacking systems was to send SYN floods to the web server. The client sys-

tem was used as a test machine to empirically detect the rate of TCP handshake failures from

non-malicious clients. The rebound host was placed on the network to simulate an Internet-

like environment. This system was configured to claim a block of 256 IP addresses. When the

attackers send their spoofed requests, they use randomized source IPs from a larger range,

which include this block of IPs owned by the rebound system. In this way, some percentage

of responses from the web server were reset by the rebound host, with the rest simply being

dropped. The router shown in the diagram was intended to act the part of an ISP’s router. The

firewall is of course the host which implements the SID filtering algorithm. Finally, the DNS

server is the system which generates the address cookies, and the web server is the system

which was attacked with SYN floods.

7.2 Experiments Performed

The first experiment conducted was designed to test the effectiveness of the TCP SYN cookies

implementation in the Linux kernel. Unfortunately, the Linux kernel does not yet support

SYN cookies for IPv6, which means the result of this test is difficult to compare with the later

tests. However, it does give a baseline for relative performance expectations.

For this test alone, native Linux routing code was used to move IPv4 traffic over the router

and firewall. The relevant TCP options configured in the kernel were left to their defaults: the

number of SYN/ACK retries was set at 5, and the number of half-open connections was set to a

hard limit of 1024. Performance data were collected when SYN cookies were off and on under

a number of different attack rates. For each test run, an attack was initiated from one of the

attack machines at a specific rate. Once the attack had stabilized (i.e., the SYN backlog on the

web server reached equilibrium), a script was run on the client system to test connectivity. A

TCP connection was initiated approximately every 0.75 seconds with a 0.75 second timeout. If

the connection could be established in that time period, a short HTTP conversation ensued and
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success was reported. Otherwise, a failure was logged. These tests were repeated for a period

of five minutes for each data point.

The second experiment tested the performance of IPv6 address cookies in a best-case scenario.

This was run in a very similar way to the SYN cookies experiment, as there was one attacker,

one testing client, and each attack rate was tested with and without the use of address cookies.

Click Modular was used for routing the IPv6 traffic, and the firewall was configured to use its

SID filtering algorithm when cookies were enabled. The same timings were used to test failure

rates and the TCP settings on the web server were also the same. The α parameter chosen for

exponential moving average (to measure traffic rates) was set to 0.999. This α value was used

because it produced consistent results in preliminary tests while not requiring overly long to

adapt to changing request rates. The firewall was also configured with a maximum rate limit

of 32 connections per second, since tests without cookies indicated this was approximately the

maximum flood rate the web server could handle without dropping new legitimate connections.

The expectation of this experiment is that the address cookies should perform similarly to SYN

cookies because all attacks were coming from one SID and all connectivity test from another.

The third experiment was designed to test address cookie performance under more complex

and realistic attack scenarios. In this test, two attacking SIDs and two testing SIDs were

used. There were four different test runs. In the first run, the attacking SIDs were distinct

from the testing SIDs. In the second run, there was one attacking SID, one SID whose traffic

consisted of tests and attacks, and a third SID where the traffic was just tests. The third

test run had just two SIDs, both of which had an attacker and a tester. The fourth and final

run had two attackers and two testers, but address cookies were not used. The α parameter

and connection rate limit were the same as in the second experiment, but tests were run for

just over three minutes, instead of five. In this experiment, it was expected that the first test

run perform as well as address cookies had in the second experiment. The second run should

perform somewhere in the middle between the best-case and worst-case. Finally, the third and

fourth test runs should be similar, since the SID filtering algorithm cannot protect against

identical SID ratios.

The fourth experiment tested the ability of the SID filtering algorithm to react to changing

attacks. Two attacking SIDs were used along with a single testing SID. A single attacker

alternated its attack between the two SIDs at different frequencies. All attacks were run at

a rate of 512 packets per second. Three test runs were conducted, each with a different value
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for the α smoothing parameter. The values used were 0.999, 0.995, and 0.990. Tests were run

once again for a period of five minutes. While no formal analysis on modulated attacks has yet

been done, the expectation here is that the attacker will have a single frequency which is his

“sweet spot”. At this frequency the attacker will switch the attack to the other SID at just the

moment when the firewall finally catches up with the new attack rate. At any other frequency,

the attack should be less effective. Each α parameter should have a different sweet spot, as

this determines the firewall’s responsiveness to change.

7.3 Data and Analysis of Results

The first experiment turned out much as expected. Using TCP SYN cookies over IPv4 allows

the web server to hold up much better under attack, as we can see from the results in Figure

6.

Figure 6: IPV4 TCP SYN COOKIES PERFORMANCE

With SYN cookies enabled, the web server did not start dropping legitimate connections until

attack rates of 300-400 packets/second, whereas no protection at the same rates resulted in

over 90% loss. One can easily see why SYN cookies have dramatically mitigated SYN floods

in today’s Internet. The packet loss that appears a bit later in the SYN cookie graph has not

been explained. It may be that generating cryptographic cookies has high enough overhead
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as to result in some dropped SYNs at that rate, or that some packet loss is occurring on the

VMWare virtual switches.

One oddity worth mentioning was observed while testing under IPv4. While the proc filesystem

reported the maximum number of half-open connections was 1024, the observed number under

a flood was around 768 when SYN cookies were off. However, when SYN cookies were turned

on, the observed number went up to 1024. Once again, the proc filesystem reported 1024 for

both cases which may be the result of a bug, or a misunderstanding of how figures are reported.

Under the later IPv6, the number of observed connections and the half-open limit coincided as

expected.

Figure 7: IPV6 ADDRESS COOKIES - ONE ATTACKER, ONE CLIENT

The second experiment also went much as expected (results in Figure 7). IPv6 address cookies

performed similarly to SYN cookies in this best-case scenario. These results are slightly less

consistent, but that is to be expected given the dynamic nature of the SID blocking algorithm.

Looking at this graph alone, one might be lead to believe that IPv6 address cookies perform as

well as SYN cookies. However, remember that this is the best-case, where attackers and valid

clients do not share any of the same SIDs.

The third experiment, which involved the mixing of clients and attackers in the same SIDs,

showed a significant performance degradation in the higher packet rates. In this graph (Figure
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Figure 8: IPV6 ADDRESS COOKIES - TWO ATTACKERS, TWO CLIENTS

8), the best-case scenario (bottom line) is where two attackers and two clients were deployed,

all on seperate SIDs. The attack rates shown reflect the total of attack rates from both attack-

ers. For some reason, after a rate 512 packets/second, the failure rate begins to rise sharply.

This is very different from the previous test, and one would expect them to be similar. The

middle line also shows a more moderate rise of failures toward the end. There are several pos-

sible explanations for this. First off, the additional hosts participating in the test would have

generated additional neighbor discovery messages, further clogging the network for the same

attack rates. While these discovery messages do not add a lot of additional traffic, it may have

been just enough to push an existing VMWare virtual switch bottleneck to further failures.

Notice, that the first two graphs were not immune to failures at the last few data points; they

just had fewer. Alternatively, the failures could be a result of some unintended oscillation in

the SID block policy which would need to be corrected with improved measurement algorithms.

It was observed that small inaccuracies in measured attack rates can result in relatively high

percentages of failures due to inadequate or overzealous blocking.

The good news about the third experiment is that the rest of the data came out according

to theory. The case where one client SID was mixed with an attacker came out right in the

middle. The firewall was forced to block this mixed SID in order to save the web server from
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being overwhelmed. This results in a failure rate that is right in the middle of the best case

and worst case scenarios, as one would expect. The other piece of good news is that the worst

case scenario, where all SIDs have the same ratio of valid clients to attackers, came out with

failure rates almost identical to the situation where no protections were deployed at all. This

implies that even in the worst case, an administrator would not be any worse off by deploying

address cookies with SID filtering. In most cases, there would almost certainly be some level

of improved resistance to attack (at least against static attacks).

The results from the final experiment (see Figure 9) are not impressive, but they did come out

as one would expect. In these modulated attacks, the current SID filtering implementation has

a hard time keeping up with the changing attack flows.

Figure 9: IPV6 ADDRESS COOKIES - MODULATED ATTACKS

Each of the three α values has a similar performance, with the smaller values doing slightly

worse. Experimentation showed that a value of 0.999 performed well in other tests, and it con-

tinues to do better overall than the others, with a maximum failure rate near 93%. The good

news is, at this attack rate (of 512 packets/second), none of these failure rates is greater than

that resulting from an attack with no protection. The bad news is that many different modu-

lation frequencies result in very high failure rates, even if they are not all optimal. It is also

conceivable that failure rates could be pushed above that of the no-protection case with cer-
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tain combinations of mixed SIDs and modulated attacks. Modulation attacks are definitely the

most serious threat to this system, but it may be possible to overcome this with SID remapping

and more intelligent attack rate measurement methods.

8 Conclusions

Thus far, research into IPv6 address cookies is very promising. Attacks coming from a small

number of locations are easily blocked, and as the complexity of an attack increases, the miti-

gation algorithms tend to degrade gracefully. The most serious threat to SID filtering is attack

modulation, but it should be possible to fully mitigate this in small to medium-sized attacks.

Other features of address cookies can contribute a partial solution to the traceback problem

and allow an administrator to hide existence of delicate, authenticated services from unau-

thorized users. While more research and engineering effort are necessary before such a sys-

tem can be usable in a real-world environment, the many potential benefits of address cookies

make them attractive. This is especially true because address cookies do not require any major

changes to networking equipment outside of the beneficiary’s network.

Future work on address cookies should include an analysis of tradeoffs for SID remapping,

the benefits of repeated referrals, and more research into optimal time-weighted averaging

formulas. In addition, more testing in a realistic network environment should be conducted to

bolster the case for address cookies, and potentially, IPv6 in general.
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Appendix A: Stretchy Blowfish (version 0.1)

Background

Recent work by Cook, et. al. [18] in the development of block ciphers with variable block sizes

inspired this work on Stretchy Blowfish. Stretchy Blowfish is a modification of Blowfish using

this elastic technique to take an existing block cipher and expand its block size to arbitrary

widths between the b and 2 · b, where b is the size (in bits) of the original algorithm’s block.

Blowfish is a block cipher proposed by Bruce Schneier in 1993 [65], which has a block size of

64 bits, and key sizes that vary from 32 to 448 bits. No known attacks have been published

which severely weaken Blowfish, but due to the relatively small block size, collision attacks are

possible when encrypting more than 232 bits of data. Blowfish was selected as an algorithm for

extension because it is one of the few remaining 64-bit block ciphers which is unrestricted in

use and has not been severely weakened through some public cryptanalytic attack.

Disclaimer: The cipher presented here has not been rigorously analyzed by qualified cryptog-

raphers. It is not safe to use in any real world systems at this time. It merely represents an

educational exploration in cipher design, and if it is developed to the point of being a trustwor-

thy cipher, it will likely be changed.

Round Adaptations

The Stretchy Blowfish cipher is designed to allow a user to select a block size between 64 and

128 bits, in steps of 8 bits. This 8-bit step limitation in block width was added to simplify

implementation and the key schedule algorithms.

The process for building an elastic cipher based on a standard block cipher is as follows:

• The original width of the cipher, b in bits, is expanded by y bits.

• After each round of the cipher, which operates only on the b bits, these y bits are swapped

into the block of b bits, and y bits from the block are swapped out. Each round, y bits sit

out the round. If the cipher is based on a Feistel network, then one round in the elastic

cipher is two rounds of the original cipher. In other words, the bits are only swapped out

every other round.

• The number of rounds in the elastic cipher, r’, is calculated by: r′ =
⌈
r · b+y

b

⌉
, where r is

the number of rounds in the original cipher. This guarantees that each bit in the elastic
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cipher is operated on the same number of times it was in the original cipher. If working

with a Feistel cipher, the number of rounds in the original cipher is considered as 1
2 of the

original, and r’ is calculated based on that.

• In each round, the y added bits are XORed with some key material.

• If the original cipher does not have a whitening step at the beginning and end, these are

added, along with an optional permutation.

The specific application of this approach for Stretchy Blowfish will now be described. Since

Blowfish is a Feistel cipher, we see it as having 8 symmetric rounds, each having 2 of the

originally defined rounds. The new number of symmetric rounds is calculated by:

r′ =
⌈
8 · 64 + y

64

⌉
+ 1

or, since y is always a multiple of 8:

r′ = 9 +
y

8

And the following table describes the number of rounds based on block size:

Block Size # of Sym. Rounds # of Asym. Rounds
64 9 18
72 10 20
80 11 22
88 12 24
96 13 26
104 14 28
112 15 30
120 16 32
128 17 34

Table 2: STRETCHY BLOWFISH - ADDITIONAL ROUNDS

The purpose of the extra symmetric round is to eliminate the need for the initial whitening

and mixing. In [18], it is mentioned that the first round of an elastic cipher is vulnerable to

a differential attack, since the extra y bits do not participate in the first round. The authors

suggest either a fast key-dependent permutation be done at the beginning, or an additional
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round be added. Since Blowfish’s round function is very fast, it makes more sense to add a

round for simplicity’s sake. In this case, a full symmetric round is being added, which should

be sufficient to take care of the needed permutation as well as the whitening.

First, let us define some variables:

There exist four S-boxes, all generated randomly in the key-schedule (see below), which map

8-bit inputs to 32-bit outputs. Let F be a function from 32 bits to 32 bits, which is identical to

Blowfish’s F function based on these S-boxes. In addition, there is a variable-sized array of key

material used as round keys. The total amount of key material needed, based on block size, is

described in the next section. This key material is stored at the beginning of a buffer, B. There

are 2 · r′ + 2 32-bit sub-keys labeled P1 through P(2·r′+2). In addition, there are r′ + 1 sub-keys

of length y labeled K1 through Kr′+1. The 32-bit sub-keys are be pulled sequentially from

the beginning of B, with the variable-width ones being chosen from the portion of B directly

following the 32-bit keys. In other words, a 32-bit sub-key Pj is located at offset j in B, and a

y-bit sub-key Kj would be located at offset (2 · r′ + 2) + y · j in B.

Let the first 64 bits of the input block be labeled Z. Split Z bits into two 32-bit halves. The first

half will be named L, and the second half R. The remaining y bits will be referred to as Y. Also,

let Z[i] be the y bits within Z starting at bit offset (8 · i), wrapping around to the beginning of

Z, if necessary (e.g., if y = 16 and i = 7, Z[i] would represent the last byte of Z concatenated

with the first byte of Z). Finally, T and k are temporary variables.

The algorithm for Stretchy Blowfish is:

Algorithm 5 STRETCHY BLOWFISH ENCRYPTION ROUNDS

For i = 1 to r′:
R← R⊕ F (L⊕ P(2·i−1))

L← L⊕ F (R⊕ P(2·i))
Y ← Y ⊕Ki

k ← 5 · (i− 1) mod 8
T ← Z[k]
Z[k]← Z[k]⊕ Y

Y ← T

L← L⊕ P(2·r′+1)

R← R⊕ P(2·r′+2)

Y ← Y ⊕K(r′+1)
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Note that in the case where the block size is 64, y is 0 and the operations on Y can be skipped.

The cipher, in this case, is almost the same as Blowfish except for the additional symmetric

round, and the change in key schedule.

New Key Schedule

Presented here is a possible adaptation to the Blowfish key schedule, which can be used to

generate enough key material for all of the changes to the rounds. It is necessary to generate

(2 · r′ + 2) 32-bit keys, and (r′ + 1) y-bit keys. Therefore, the total amount of key material

(excluding the S-boxes), bk in bytes, is:

bk = 4 · (2 · r′ + 2) + (
y

8
) · (r′ + 1)

or, based solely on y:

bk = 80 + y +
5 · y
4

+ (
y

8
)2

bk =
1
64
· y2 +

9
4
· y + 80

The table below describes this function for each possible block size:

Block Size # of Sym. Rounds bk

64 9 80
72 10 99
80 11 120
88 12 143
96 13 168
104 14 195
112 15 224
120 16 255
128 17 288

Table 3: STRETCHY BLOWFISH SUB-KEY MATERIAL

While this function grows quickly with y, the largest size is still significantly smaller than the

effort required to generate the S-boxes themselves under the original Blowfish.
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The first part of the key schedule generation is very similar to that of the original Blowfish. It

starts with a buffer, B, of size (288 + 4096 = 4384) bytes which is filled with the hexadecimal

digits of π. Also, a temporary 64-bit buffer X is set to 0. The first 32 bits of this buffer are

referred to as XL and the second 32 bits as XR. The notation Encrypt64(B,X) means to encrypt

the block X with the 64-bit version of Stretchy Blowfish, using the first 80 bytes of B as the 32-

bit sub-keys, and the last 4096 bytes as the S-boxes. Finally, B[j] represents the 32-bit value

stored at the j-th bit offset of B. The algorithm is as follows:

Algorithm 6 STRETCHY BLOWFISH SUB-KEY GENERATION

Sequentially XOR the user key into the beginning of B, wrapping around at 448-bits.
For i = 1 to 36:

X ← Encrypt64(B,X)
B[64 · i]← XR

B[64 · i + 32]← XL

Once the first 288 bytes of B are filled, the random S-boxes also need to be generated. Let Sk,l

be the set of 32-bit values in B from B[k] to B[l − 1], inclusive. This part deviates a bit more

from the original Blowfish algorithm:

Algorithm 7 STRETCHY BLOWFISH S-BOX GENERATION

Let X retain its last value from the sub-key generation algorithm.
c← 2304

For i = 1 to 512:

X ← Encrypt64(B,X)
k ← c + 128 · b i−1

128 c
l← c + 64 · i
j ← 20
While (XL = XR, or XLεSk,l, or XRεSk,l):

XR ← XR ⊕ F (XL ⊕B[32 · j])
XL ← XL ⊕ F (XR ⊕B[32 · j + 32])
j ← (j + 2) mod 72

B[l]← XR

B[l + 32]← XL

When this is finished, calculate the value of bk (the number of bytes needed for the sub-keys

based on y). If bk is less than 288, discard the portion of B after the first bk bytes up until the

beginning of the first S-box. The resulting bk + 4096 bytes can then be used as B for the main
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cipher.

Reasoning

Stretchy Blowfish’s key schedule algorithm is significantly different than Blowfish’s for several

reasons. For one, more key material needs to be generated for the additional rounds and for

the whitening of y. Beyond this, two other changes were introduced as improvements. One of

the more successful (publicly known) attacks on Blowfish was done by Vaudenay [81], which

showed that duplicate entries in an S-box leaves the cipher open to certain attacks. To avoid

this, Stretchy Blowfish checks for duplicate entries and does additional rounds of encryption

if needed. Secondly, an observation by Schmidt [64] that the third and fourth sub-keys are

independent of the first 64-bits of user key prompted the change in sub-key assignment. In the

original Blowfish’s key schedule, XL was assigned to the lower numbered sub-key after each

encryption. In the second encryption, this causes a cancellation which results in less diffusion

of the original key data. The suggested fix, which is implemented in Stretchy Blowfish, is to

swap the order of sub-key assignment.

While these changes to the key schedule are meant to improve the security of the cipher, they

very well may have introduced some serious vulnerability. Because the S-boxes are generated

in the key schedule, nearly all the security of the cipher depends on it. There are two potential

flaws we have identified which arise because of these changes. First, the S-box collision avoid-

ance checks introduce a variable amount of computation, and in instances where an attacker

can measure the key generation time, this could lead to a timing attack. Fortunately, this can

be avoided with a careful implementation.

Secondly, a weakness may have been introduced in the way later sub-keys are generated. The

original Blowfish’s key schedule algorithm acts as a pseudorandom number generator with

a very large state. Each time new data is generated, it is fed back into the state for future

rounds. Every new block generated is influenced by both the large B buffer, as well as the

temporary value of X. However, in the proposed key schedule for Stretchy Blowfish, the blocks

generated after the first 80 bytes are no longer used to generate new blocks. Therefore, the

random number generator essentially drops from one with over 4 kilobytes of state, to one

with just 64 bits of changing state. This continues until the rest of the sub-keys are generated.

When the algorithm begins generating the S-boxes, the generator is once again using all of its

state. Therefore, in the cases where most of the later sub-keys are used (with large blocks),

there may be an attack to exploit this reduced state. Hopefully though, with the improved
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diffusion and the fact that all of the users’ key is diffused after just 56 bytes, the algorithm will

hold up under scrutiny.

Performance

Blowfish’s key schedule has always been its Achilles heel in terms of performance and memory

requirements, and Stretchy Blowfish is no different. In fact, the additional symmetric round of

Stretchy Blowfish used in the key generation process adds a 12.5% computation overhead, and

the S-box collision avoidance adds some additional iteration. Fortunately, collisions in S-boxes

are somewhat rare, so the additional rounds used for this will not impact performance a great

deal. The additional storage needs are not excessive, requiring between 0.2% and 5.2% more

memory after the sub-keys and S-boxes are generated.

It seems that the encryption and decryption operations are not heavily impacted by the addi-

tional rounds, proportional to the amount of data being encrypted. For instance, in the original

Blowfish, there were two rounds of of encryption per byte. In Stretchy Blowfish, there are

between 2.125 and 2.25 rounds per byte, depending on the specific block size.
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